Lean Excel

Top Functions

By Scott Ratliff

Quick reference guide with over 500 examples for the most used Excel functions!

See all our books at LeanExcelBooks.com

Lean Excel: Top Functions

By Scott Ratliff

www.LeanExcelBooks.com

Legal Stuff

Copyright © 2015 by Scott Ratliff

All rights reserved. No part of this ebook may be reproduced or transmitted in any form or by any means without written permission from the publisher.

All brand names and product names used in this book are trade names, service marks, trademarks, or registered trademarks of their respective owners. Scott Ratliff is not associated with any product or vendor mentioned in this book.

Introduction

Knowing how to use the built-in functions in Microsoft Excel will turn you into a power user! There are hundreds of functions and at first, the list can seem overwhelming. Even as a Microsoft Office Expert in Excel 2013 I do not know all of the Excel functions available. In writing this eBook, I discovered several new functions that I have now incorporated into my daily use and have made my data analysis more efficient. I hope that this eBook will help you learn more of the Excel functions and that they would help you gain control over your spreadsheets!

Why Lean Excel?

This Lean Excel series focuses on time-saving tools that will help you reduce the waste associated with data analysis. One of the tenets of lean manufacturing theory is using specialized tools to accomplish a task. You could use a wrench to drive a nail but a hammer will get the job done much faster. Remember time is money.

Think of the built-in functions as specialized tools. Let's say you needed to find the average of a dataset that is in A1 through A5. Remember the average is the sum of all the numbers in a dataset divided by the count of numbers in that dataset. Let's look at three ways to find the average. First, you could use the formula $=(\mathrm{A} 1+\mathrm{A} 2+\mathrm{A} 3+\mathrm{A} 4+\mathrm{A} 5) / 5$. Second, you could use the SUM and COUNT functions =SUM(A1:A5)/COUNT(A1:A5). Or lastly, you could use the AVERAGE function =AVERAGE(A1:A5). Although all three options give you the same answer, using the AVERAGE function is clearly the most efficient. But in order to use the AVERGE function, you need to know that it exists and what requirements you need to use it.

Entering Formulas and Functions

First, let's identify the similarities between formulas and functions. Both formulas and functions can be entered using the formula bar immediately below the Excel Ribbon. The Excel Ribbon is the horizontal bar near the top of the Excel window that contains all of the buttons for tools available in Excel. Both formulas and functions begin with the equals sign $(=)$. This is required only at the beginning of the formula bar; it is not required before each individual function within that cell. The equals sign tells Excel that you want Excel to do a calculation for this cell. If you did not have the equals sign, then Excel will put exactly what you type into that cell.

Next, let's identify the difference between a function and a formula. In the first section of this book, we discussed 3 ways to find the average of five numbers. The first option is an example of a formula. It begins with an equals sign (=) and includes mathematic operators (addition: +, subtraction: -, multiplication: *, division: /). As seen in the first option $=(\mathrm{A} 1+\mathrm{A} 2+\mathrm{A} 3+\mathrm{A} 4+\mathrm{A} 5) / 5$, it can include both references to cells $(\mathrm{A} 1, \mathrm{~A} 2$, A3, etc.) and actual numbers (the 5 after the division sign). A formula can include other mathematic operators such as parentheses () to determine the order of operations and \wedge for exponents. Excel follows the same order of operations you learned in algebra: Parentheses then exponents then multiplication and division and lastly addition and subtraction. So if you entered $=(2+3)^{\wedge} 2 / 5+1$ into a cell in Excel, it would first do what was in the parentheses $(2+3)=5$. Next it would look for exponents so $(5)^{\wedge} 2=25$. Then it would look for multiplication or division $25 / 5=5$ and lastly addition or subtraction $5+1=$ 6. So 6 would be the result of the formula and be displayed in the cell.

A function is entered very similarly but uses a built-in keyword that Excel will recognize. The third option from the previous section uses the AVERAGE function. To enter the function, first put an equals sign (=) then type the function name. Excel will try to recognize the keyword you are typing and provide you a list of the functions that begin with what you typed. You can either continue typing or double-click on the function you see in the list. When you type the keyword, upper case is not required; however, if Excel identifies the keyword as a function, then it will convert it to upper case. Alternatively, you could click on the Formula tab on the Excel ribbon and choose a function from the categories listed there. For reference consistency, the functions included in this eBook are divided to match the categories on the Formulas tab of the Excel ribbon.

Each function begins with the equals sign (=) then the keyword (AVERAGE, COUNT, SUM, etc.) and then an open parentheses (. After the open parentheses, Excel expects a list of arguments. This is the most confusing part of using a function. Each function requires a different set of arguments and the arguments must match certain criteria or the function will return an error (\#ERR, \#N/A, \#DIV/0, etc.). In the third option above, the AVERAGE function required some number, list of numbers, or range as an argument. We entered the range A1:A5 for the argument. We assumed that range contained valid number data, if any cell in that range A1:A5 contained something besides a number, then our function may have resulted in an error.

You can also use formulas and functions together. For example, the second option of the previous section is two functions (SUM and COUNT) in a formula (SUM/COUNT). We could use any of the mathematic operators on the result of any function as long as the result of that function is a number. Some functions return non-numeric data so that may result in an error.

Function Arguments

A few more details we need to discuss before we get to the functions. In the previous section, we discussed how a function begins with an equals sign then a keyword, then an open parentheses, then the arguments, and lastly the closing parentheses. Some functions such as TODAY() requires no arguments. Other arguments such as SUM, COUNT, AVERAGE require one argument but then allow for many more arguments. When you enter a function, excel shows you which argument you are currently entering with the popup box that appears below the formula bar. For example, for the SUM function, the popup box displays SUM(number1, [number2], ...). The number1 means it is required but the brackets [] around the [number2] indicate it is optional. Note the comma separating the arguments; when you enter a function, you will need to separate the arguments by a comma too. The (...) means that there could be many more arguments that match the type of the last argument. In this case, there could be many more numbers ([number3], [number4], etc).

Some functions have an optional pair of arguments. For example, the SUMIFS, COUNTIFS, and AVERAGEIFS functions all have the arguments [criteria_rangeX, criteriaX] where X is the next number in series. Since the bracket is around the pair or arguments, the pair is optional but if you want to include the argument, then you must include both arguments of the pair.

Most arguments could be fulfilled by either a value or a cell reference. Most experienced Excel users put all of the arguments in cells and then reference the cells within the arguments of the function. The example workbooks are built this way. With this method, you can change the value in the reference cells and the function will then change instead of having to go into the formula bar and change the function directly. I hope using this method will help you understand the relationship between the inputs and outputs of the function as both components are visible.

Example Workbook

To really understand a topic, most people need to visualize it. Therefore, all of the functions discussed in this eBook are included in a workbook with over 500 examples. You can find the example workbook and Visual Aid printouts at the link below.

To help visualize the inputs, some functions that require a range have the range address saved in a cell. Then in the function, I've added the INDIRECT function to convert the range address saved in the cell to the actual range of the function. For example, let's say B5 contains the range address "A2:A4" and A2 through A4 contains all numbers. If I was to enter the function $=\mathrm{SUM}(\mathrm{B} 5)$, it would return 0 because B 5 contains the text string "A2:A4". In order to convert the text "A2:A4" into an address, we need to add the INDIRECT function. So the function should then be =SUM(INDIRECT(B5)) which is equivalent to $=\operatorname{SUM}(\mathrm{A} 2: \mathrm{A} 4)$ since B5 contains "A2:A4". The examples are set up this way so you can see the address of the ranges that go into the functions. To change the address, change it in the cell with the address (in the most recent example, that cell would be B5).

Find the example workbook here:

Function Guide

This Function Guide lists the keyword then the arguments and description for each function. Whenever the description references the arguments, the argument name will be in bold. Most descriptions will begin with the word "returns." The arguments are the input of the function and then the function returns the output. The output is visible in the cell while the function is still visible in the formula bar or by double clicking in the cell.

Some functions in the function guide must be entered as an array. To enter a function as an array, hold down the control and shift buttons while pressing enter (for mac users, hold down control and shift while pressing return). You will know the function was entered as an array by the curly brackets \{\} around the function in the formula bar. Do not enter the curly brackets manually.

Date Functions

Using Dates in Excel

Excel stores dates as numbers called serial numbers. Zero corresponds to 1/1/1904. The number 100 refers to 100 days since $1 / 1 / 1904$. Times are stored as partial days. So $12: 00$ noon is half the day so it is stored as 0.5 added to the date.

Adding and Subtracting Dates and Times

To add or subtract a date, just add or subtract whole numbers. To add or subtract a time, add or subtract the partial day. If you wanted to see what time it was after 5 hours, it is easier and more exact to add $5 / 24$ to a date than it is to remember that $5 / 24=$. 208333333.

DATE

Arguments: year, month, day
Description: Returns the serial number of the date of the specified year, month, and day.

DAY

Arguments: serial_number
Description: Returns the day of the month (1-31) of the serial_number.

DAYS

Arguments: end_date, start_date
Description: Returns the number of days between end_date and start_date. Equivalent to end_date - start_date.

EDATE

Arguments: start_date, months
Description: Returns the serial number of the date that is the specified number of months before or after the start_date. If months is less than 0 then it returns months before; if greater than 0 then months after.

EOMONTH

Arguments: start_date, months
Description: Returns the serial number of the last day of the month that is the specified number of months before or after the start_date. If months is less than 0 then it returns months before; if greater than 0 then months after.

HOUR

Arguments: serial_number
Description: Returns the hour (0-23) of the serial_number.

MINUTE

Arguments: serial_number
Description: Returns the minute (0-59) of the serial_number.

MONTH

Arguments: serial_number
Description: Returns the month (1-12) of the serial_number.

NETWORKDAYS

Arguments: start_date, end_date, [holidays]
Description: Returns the number of full work days between start_date and end_date. Specify the dates of any holidays to exclude.

NOW

Arguments: none
Description: Returns the computer's date and time.

SECOND

Arguments: serial_number
Description: Returns the second (0-59) of the serial_number.

TIME

Arguments: hour, minute, second
Description: Returns the serial number of the time of the specified hour, minute, and second.

TODAY

Arguments: none
Description: Returns the computer's date.

WEEKDAY

Arguments: serial_number, [return_type]
Description: Returns a number (1-7) of the day in the week for the serial_number. Use return_type to determine how to count the days.

WEEKNUM

Arguments: serial_number, [return_type]
Description: Returns the week number of the year for the serial_number. Use return_type to determine how to count the weeks.

WORKDAY

Arguments: start_date, days, [holidays]
Description: Returns the serial number of the number of days after the start_date. Specify the dates of any holidays to exclude.

YEAR

Arguments: serial_number
Description: Returns the year of the serial_number.

Financial Functions
 Notes for Financial Functions

There are a few things in mind when using the functions and their arguments described below. Be sure to keep units consistent for rate and nper. If monthly payments then rate will be APR/12 and nper is number of years of loan*12. For annual payments, then rate will be APR and nper is number of years. Cash deposited into savings is represented by negative numbers and cash received by positive numbers. If type is 0 or omitted, then payments are made at the end of the period. If type is 1 then payments are made at the beginning of the period.

FV

Arguments: rate, nper, pmt, [pv], [type]
Description: Returns the future value of an investment of $\mathbf{p v}$ at interest rate rate based on the number nper of constant payments pmt.

PV

Arguments: rate, nper, pmt, [fv], [type]
Description: Returns the present value of an investment with target future value fv at interest rate rate based on the number nper of constant payments pmt.

RATE

Arguments: nper, pmt, pv, [fv], [type], [guess]
Description: Returns the interest rate per period of a loan/investment of size $\mathbf{p v}$ with nper payments of constant value $\mathbf{p m t}$. $\mathbf{F v}$ is the cash balance after the last payment. If $\mathbf{f v}$ is omitted, 0 is assumed. Guess is the guess of what the interest rate should be. If guess is omitted, it is assumed to be 10 percent.

PMT

Arguments: rate, nper, pv, [fv], [type]
Description: Returns the payment per period of a loan/investment of size $\mathbf{p v}$ with nper payments with an interest rate rate. $\mathbf{F v}$ is the cash balance after the last payment. If $\mathbf{f v}$ is omitted, 0 is assumed.

Logical Functions
 AND

Arguments: logical1, logical2, ...
Description: Returns TRUE if all logical arguments are TRUE.

FALSE

Arguments: none
Description: Returns the value FALSE.

IF

Arguments: logical_test, value_if_true, value_if_false
Description: If logical_test returns TRUE then return the value_if_true, otherwise return the value_if_false.

IFERROR

Arguments: value, value_if_error
Description: If value is an error (\#N/A, \#DIV/0, etc.) then return the value_if_error, otherwise returns value.

IFNA

Arguments: value, value_if_na
Description: If value is \#N/A then returns the value_if_na, otherwise returns value.

ISBLANK

Arguments: value
Description: If value is blank then returns TRUE, if not then returns FALSE.

ISERR

Arguments: value
Description: If value is an error other than \#N/A then returns TRUE, if not then returns FALSE.

ISERROR

Arguments: value
Description: If value is an error (\#N/A, \#DIV/0, etc.) then returns TRUE, if value is not an error then returns FALSE.

ISNUMBER

Arguments: value
Description: If value is a number then returns TRUE, if not then returns FALSE.

NOT

Arguments: logical
Description: If logical would return TRUE then return FALSE or if FALSE then return TRUE.

OR

Arguments: logical1, logical2, ...
Description: Returns TRUE if at least one logical argument is TRUE.

TRUE

Arguments: none
Description: Returns the value TRUE.

Lookup Functions
 ADDRESS

Arguments: row_num, column_num, [abs_num], [a1], [sheet_text]
Description: Returns a cell reference as text from column_num and row_num. Use abs_num to identify absolute or relative references and a1 for A1 or R1C1 style and sheet_text to specify the sheet name.

CHOOSE

Arguments: index_num, value1, [value2], ...
Description: Returns a value (value1, value2, ...) based on a choice for index_num. Like an if statement with more options. Index_num cannot be greater than the number of values.

COLUMN

Arguments: [reference]

Description: Returns a number of the column of the reference. If reference is left blank then returns the column of the cell containing the formula.

COLUMNS

Arguments: array
Description: Returns the number of columns in the range array.

FORMULATEXT

Arguments: reference
Description: Returns the formula that is stored in reference as a text string.

GETPIVOTDATA

Arguments: data_field, pivot_table, [Field1, item1], [Field2, item2], ...
Description: Returns a value from the data_field in the pivot table pivot_table which meets all of the criteria of item in Field.

HLOOKUP

Arguments: lookup_value, table_array, row_index_num, [range_lookup]
Description: Finds lookup_value in the top row of the range table_array and then returns the value from the same column in the row_index_num row of that table. For example, if you want to return the third row then row_index_num = 3. If range_lookup is FALSE, then the value in the top row must match lookup_value exactly. If range_lookup is TRUE, then it will match the closest value to lookup_value without going over.

HYPERLINK

Arguments: link_location, [friendly_name]
Description: Returns the text of friendly_name as a hyperlink to link_location. If
friendly_name is left blank, then the text of link_location will be returned as a hyperlink.

INDEX (array)

Arguments: array, row_num, [column_num]
Description: Returns the cell reference at the intersection of row_num and column_num within array. Enter as an array function with either row_num or column_num as 0 (zero) to return the entire row or column.

INDEX (reference)

Arguments: reference, row_num, [column_num], [area_num]
Description: Returns the cell reference at the intersection of row_num and column_num within reference. If reference contains multiple ranges, then area_num can be used to identify which range. If row_num or column_num is 0 (zero) then returns the entire row or column.

INDIRECT
Arguments: ref_text, [a1]
Description: Returns the reference specified by the text string ref_text. If a1 is TRUE or omitted, then ref_text is interpreted as an A1-style reference. If not, then it is interpreted as an R1C1-style reference.

MATCH

Arguments: lookup_value, lookup_array, [match_type]
Description: Looks for lookup_value within a lookup_array of cells and returns the position of that item in the range. If match_type is 1 or omitted, then returns the largest value that is less than or equal to lookup_value and values in lookup_array must be sorted in ascending order. If match_type is 0 , then returns the first value that is exactly equal to lookup_value and values can be sorted in any order. If match_type is -1 , then returns the smallest value that is greater than or equal to lookup_value and values in lookup_array must be sorted in descending order.

OFFSET

Arguments: reference, rows, cols, [height], [width]
Description: Returns the reference to the range that is rows rows and cols columns away from reference. Use height and width to specify the number of rows and columns returned.

ROW

Arguments: [reference]
Description: Returns a number of the row of the reference. If reference is left blank then returns the row of the formula.

ROWS

Arguments: array
Description: Returns the number of rows in the range array.

VLOOKUP

Arguments: lookup_value, table_array, col_index_num, [range_lookup]
Description: Finds lookup_value in the first column of the range table_array and then returns the value from the same row in the col_index_num column of that table. For example, if you want to return the third column then col_index_num = 3. If range_lookup is FALSE, then the value in the first column must match lookup_value exactly. If range_lookup is TRUE, then it will match the closest value to lookup_value without going over and table_array must be sorted in ascending order.

Math Functions
 ABS

Arguments: number
Description: Returns the absolute value of number.

CONVERT

Arguments: number, from_unit, to_unit
Description: Returns the result of converting number in from_unit to the equivalent value in to_unit.

DELTA

Arguments: number1, [number2]
Description: Returns TRUE (1) or FALSE (0) if number1 is equal to number2.

EXP

Arguments: number
Description: Returns the value of e (Euler's number) raised to the power number.

FACT

Arguments: number
Description: Returns the value of number's factorial.

INT
Arguments: number
Description: Returns number rounded down the nearest integer.

LOG

Arguments: number, [base]
Description: Returns the logarithm with base base of number.

LOG10

Arguments: number
Description: Returns the common logarithm (base 10) of number.

LN

Arguments: number
Description: Returns the natural logarithm of number.

MOD

Arguments: number, divisor
Description: Returns the remainder of number divided by divisor.

MROUND

Arguments: number, multiple
Description: Returns number rounded to the nearest multiple.

PI

Arguments: none
Description: Returns the value of Pi .

POWER

Arguments: number, power
Description: Returns number raised to the exponent power.

PRODUCT

Arguments: number1, [number2], ...
Description: Returns the value of all number arguments multiplied together.

RAND

Arguments: none
Description: Returns a random number between 0 and 1.

RANDBETWEEN

Arguments: bottom, top
Description: Returns a random number between bottom and top.

ROUND

Arguments: number, num_digits
Description: Returns number rounded to the decimal place specified by num_digits. If num_digits is positive, then places to the right of the decimal. If negative, then places to the left of the decimal.

ROUNDDOWN

Arguments: number, num_digits
Description: Returns number rounded down to the decimal place specified by num_digits. If num_digits is positive, then places to the right of the decimal. If negative, then places to the left of the decimal.

ROUNDUP

Arguments: number, num_digits
Description: Returns number rounded up to the decimal place specified by num_digits. If num_digits is positive, then places to the right of the decimal. If negative, then places to the left of the decimal.

SIGN

Arguments: number
Description: Returns 1 if number is positive, -1 if negative, or 0 if 0.

SQRT

Arguments: number
Description: Returns the square root of number.

SUBTOTAL

Arguments: function_num, ref1, [ref2], ...
Description: Returns the subtotal of a list or database with ref1, ref2, etc. The value of the subtotal can change based on the function_num.

SUM

Arguments: number1, [number2], ...
Description: Returns the value of all number arguments added together.

SUMIF

Arguments: range, criteria, [sum_range]
Description: Returns the value of sum_range added together if the corresponding value in range meets the criteria.

SUMIFS

Arguments: sum_range, criteria_range1, criteria1, [criteria_range2, criteria2],...
Description: Returns the value of sum_range added together if all of the corresponding values in all criteria_range meets all criteria.

SUMPRODUCT

Arguments: array1, [array2], ...
Description: Returns the sum of corresponding values in arrays multiplied together.

SUMSQ

Arguments: number1, [number2], ...
Description: Returns the sum of the number arguments squared. Number arguments are squared first and then added together.

TRUNC

Arguments: number, [num_digits]
Description: Returns number truncated or cut off to the number of decimal places in num_digits. If num_digits is left blank, then number is truncated to an integer. Truncation does not involve rounding.

Statistical Functions

AVERAGE

Arguments: number1, [number2], ...
Description: Returns the arithmetic mean of the number arguments.

AVERAGEIF

Arguments: range, criteria, [average_range]
Description: Returns the arithmetic mean of the average_range if the corresponding value in range meets the criteria.

AVERAGEIFS

Arguments: average_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...
Description: Returns the arithmetic mean of the average_range if all of the corresponding values in criteria_range meet the criteria.

CORREL

Arguments: array1, array2
Description: Returns the correlation coefficient between the two data sets array1 and array2.

COUNT

Arguments: value1, [value2], ...
Description: Returns the number of cells in a range (value1, value2, ...) with numbers.

COUNTA

Arguments: value1, [value2], ...
Description: Returns the number of cells in a range (value1, value2, ...) that are not empty.

COUNTBLANK

Arguments: range
Description: Returns the number of cells in range that are empty.

COUNTIF

Arguments: range, criteria
Description: Returns the number of cells in a range that meet the specified criteria.

COUNTIFS

Arguments: criteria_range1, criteria1, [criteria_range2, criteria2], ...
Description: Returns the number of cells that meet all of the specified criteria in their respective criteria_ranges.

FORECAST

Arguments: x, known_y's, known_x's
Description: Returns a future value at point \mathbf{x} along a linear trend using existing data (known_y's and known_x's).

F.TEST

Arguments: array1, array2
Description: Returns the result of the F-Test which measures the probability that the variances of two arrays are not significantly different.

INTERCEPT

Arguments: known_y's, known_x's
Description: Returns the point at which a line will intersect the y-axis using linear regression of known_y's and known_x's.

LARGE

Arguments: array, k
Description: Returns the k-th largest value in the range array.

MAX

Arguments: number1, [number2], ...
Description: Returns the largest value in a range (number1, number2, ...).

MEDIAN

Arguments: number1, [number2], ...
Description: Returns the median of the values in a range (number1, number2, ...).

MIN

Arguments: number1, [number2], ...
Description: Returns the smallest value in a range (number1, number2, ...).

MODE.MULT

Arguments: number1, [number2], ...
Description: Returns a vertical array of the most commonly occurring values in the number1, number2, ... Highlight the number of cells in a column to return, then press control-shift-enter simultaneously to enter as an array function.

MODE.SNGL

Arguments: number1, [number2], ...
Description: Returns the most common value in the number1, number2, ... array.

PEARSON

Arguments: known_y's, known_x's
Description: Returns the Pearson Product Moment Coefficient of known_y's and known_x's. The Pearson Product Moment Coefficient is abbreviated R.

PERCENTILE.INC

Arguments: array, k
Description: Returns the value located at the kth percentile of an array.
PERCENTILE.EXC is slightly more accurate than PERCENTILE.INC but it will only work if k is between $1 / \mathrm{n}$ and $1-1 / \mathrm{n}$ where n is the number of elements in array.

PERCENTILE.EXC

Arguments: array, k
Description: Returns the value located at the kth percentile of an array.
PERCENTILE.INC is slightly less accurate than PERCENTILE.EXC but it will work for a value of k between 0 and 1 .

PERCENTRANK.INC

Arguments: array, x , [significance]
Description: Returns the percentage rank of a value \mathbf{x} in an array. Inclusive of the data set.

PERCENTRANK.EXC

Arguments: array, x, [significance]
Description: Returns the percentage rank of a value \mathbf{x} in an array. Exclusive of the data set.

QUARTILE.EXC

Arguments: array, quart
Description: Returns the exclusive quart (0-4) quartile of the range array.

QUARTILE.INC

Arguments: array, quart
Description: Returns the inclusive quart (0-4) quartile of the range array.

RANK.AVG

Arguments: number, ref, [order]
Description: Returns the rank of a number in range ref sorted ascending or descending based on order. If multiple ranks are found, the average rank is returned. If order is left blank, the order will be ascending.

RANK.EQ

Arguments: number, ref, [order]
Description: Returns the rank of a number in range ref sorted ascending or descending based on order. If multiple ranks are found, the top rank is returned. If order is left blank, the order will be ascending.

RSQ

Arguments: known_y's, known_x's
Description: Returns the square of the Pearson Product Moment Coefficient of known_y's and known_x's. Known as R-squared.

SLOPE

Arguments: known_y's, known_x's
Description: Returns the slope of a line using linear regression of known_y's and known_x's.

SMALL

Arguments: array, k
Description: Returns the k-th smallest value in the range array.

TRIMMEAN

Arguments: array, percent
Description: Returns the arithmetic mean of the interior percent of range array.

T.TEST

Arguments: array1, array2, tails, type
Description: Returns the probability of a Student's T-Test comparing the average of array1 and array2 with number of tails and type.

Z.TEST

Arguments: array, x, [sigma]

Description: Returns the one-tailed value of a Z-Test of array with value \mathbf{x} and sigma level sigma.

Text Functions
 What is a string?

In computer lingo, a series of text characters is called a string. A string can be composed of letters, numbers, or symbols.

CLEAN

Arguments: text
Description: Returns text with all non-printable characters removed.

CONCATENATE

Arguments: text1, text2, etc.
Description: Returns the combination of multiple text strings.

EXACT

Arguments: text1, text2
Description: Returns TRUE if two text strings are exactly the same (including upper/lower case).

FIND

Arguments: find_text, within_text, start_num
Description: Finds one string (find_text) within another string (within_text). Can specify where to start looking with start_num.

LEFT

Arguments: text, num_chars
Description: Returns the leftmost num_chars of the text string.

LOWER

Arguments: text
Description: Returns text with all letters in lower case.

MID

Arguments: text, start_num, num_chars
Description: Returns the num_chars of the text string starting at start_num.

PROPER

Arguments: text
Description: Returns text with the first letter in each word in upper case and the rest to lower case.

REPLACE

Arguments: old_text, start_num, num_chars, new_text
Description: Replaces num_chars characters starting at start_num of old_text with new_text.

RIGHT

Arguments: text, num_chars
Description: Returns the rightmost num_chars of the text string.

SEARCH

Arguments: find_text, within_text, start_num
Description: Finds one string (find_text) within another string (within_text). Can specify where to start looking with start_num. SEARCH is more versatile than FIND. FIND is case sensitive where SEARCH is not. SEARCH also accepts the wildcard characters ? for single and * for multiple characters.

TEXT

Arguments: value, format_text
Description: Returns value reformatted according to the format_text specified.

TRIM

Arguments: text
Description: Returns text with all spaces removed except for a single space between words.

UPPER

Arguments: text
Description: Returns text with all letters in upper case.

About the Author

Scott Ratliff holds a Bachelor's of Science degree in Materials Science and Engineering from the University of Kentucky. He is also a certified Microsoft Excel 2013 Expert. He is working towards his Six Sigma Black Belt accreditation with a focus on Lean Manufacturing Improvements. He lives in Kentucky with his wife and two daughters. Find his entire list of Lean Excel Books on his website www.LeanExcelBooks.com.

Other Books by Scott Ratliff Lean Excel: Dynamic Charts

Eliminate unnecessary steps and draw data-based conclusions faster by creating dynamic charts in Microsoft Excel! Charts that update automatically when you add or delete data. This eBook contains a detailed procedure on how to create dynamic charts as well as a full explanation of each step for your learning. Also included is a downloadable template with three types of dynamic charts in place so you can see the final result as well as a printable one-page visual instruction guide to keep at your desk to have any time you need it! Increase your productivity immediately! Requires Microsoft Excel 97 or newer.
Available on both Amazon Kindle and iBooks.

Alleluia: Family Worship Notebook

Use the Alleluia: Family Worship Notebook to help you and your family grow closer to God and more knowledgeable about His Word! The included tools provide a structured format you and your family can use to record, review, and retain the worship services of your local church. Different level notebook pages are included for grade 1 through adults. Family Bible study questions are included to help start or restart your family Bible studies. Available on both Amazon Kindle and iBooks.

