

BITCOIN FOR THE BEFUDDLED
by Conrad Barski and Chris Wilmer

San Francisco

BITCOIN FOR THE BEFUDDLED. Copyright © 2015 by Conrad Barski and Chris Wilmer.
All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and
the publisher.
Printed on demand in USA.
ISBN-10: 1-59327-573-0
ISBN-13: 978-1-59327-573-0
Publisher: William Pollock
Production Editor: Serena Yang
Cover Illustration: Conrad Barski
Interior Design: Octopod Studios
Developmental Editor: Tyler Ortman
Technical Reviewer: Patrick Fuller
Copyeditor: Anne Marie Walker
Compositor: Alison Law
Proofreader: Paula L. Fleming
Indexer: Nancy Guenther
For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc.
directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; info@nostarch.com
www.nostarch.com
Library of Congress Control Number: 2014951031
No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a
trademarked name, we are using the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.
The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the authors nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.
Nothing in this book is intended to offer legal or financial advice, and neither the authors nor
the publisher are engaged in the business of rendering such advice. If you’re looking for legal or
financial advice, please run to the nearest qualified professional and don’t ask us. Neither the
authors nor the publisher will be liable for any loss or risk that you incur by using the
information contained in this book.

mailto:info@nostarch.com
http://www.nostarch.com

About the Authors
Conrad Barski has an M.D. from the University of Miami and nearly 20 years of programming
experience. Barski is a cartoonist, programmer, and the author of Land of Lisp (No Starch
Press). He’s been using Bitcoin since 2011.
Chris Wilmer holds a Ph.D. in chemical engineering from Northwestern University and is a
professor at the University of Pittsburgh. Wilmer’s first purchase with Bitcoin was a bag of
honey caramels from a farm in Utah. They were delicious.

BRIEF CONTENTS
Preface
Chapter 1: What Is Bitcoin?
Chapter 2: Bitcoin Basics
Chapter 3: Storing Your Bitcoins Safely, Securely, and Conveniently
Chapter 4: Buying Bitcoins
Chapter 5: Lost at Sea: A Cryptographic Adventure
Chapter 6: Why Bitcoin Is a Big Deal
Chapter 7: The Cryptography Behind Bitcoin
Chapter 8: Bitcoin Mining
Chapter 8.5: The Strange World of Altcoins
Chapter 9: Understanding the Different Types of Bitcoin Wallets
Chapter 10: Bitcoin 2030
Appendix A: Hello Money! A Simple JavaScript Program
Appendix B: Bitcoin Programming with BitcoinJ
Index

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\pref02.html#pref02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch04
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch04
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch04
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch04
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08a.html#ch08a
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08a.html#ch08a
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08a.html#ch08a
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08a.html#ch08a
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08a.html#ch08a
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08a.html#ch08a
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08a.html#ch08a
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\index.html#index

CONTENTS IN DETAIL
PREFACE
Acknowledgments
Chapter 1:
WHAT IS BITCOIN?
Why Bitcoin Now?
The Benefits of Using Bitcoin
The Complexity and Confusion of Bitcoin
What’s in This Book?
Chapter 2:
BITCOIN BASICS
How Bitcoin Works in Simple Terms
Bitcoin Units
The Bitcoin Address
The Private Key
The Bitcoin Wallet
Creating Your First Bitcoin Wallet with Electrum
Acquiring Bitcoins in Your Wallet
Spending Bitcoins with Your Wallet
Bitcoin Addresses Generated by Your Bitcoin Wallet Program
The Blockchain
The Blockchain Lottery
Blockchain Forking
Transaction Confirmations, Double Spending, and Irreversibility
Mining Bitcoins
The Complexity of the Bitcoin System
Chapter 3:
STORING YOUR BITCOINS SAFELY, SECURELY, AND CONVENIENTLY
Storing Your Private Key(s)
Hot Storage vs. Cold Storage
Personal vs. Hosted Wallets
Safety, Security, and Convenience
Storing Small Amounts of Bitcoins
Online Hosted Wallet Services
Online Personal Wallet Services
Personal Hot Wallet
Storing Large Amounts of Bitcoins
Paper Wallets
Encrypted Paper Wallets
Offline Transaction Signing
Fragmented Private Keys and Multi-Signature Addresses
Special Mention: The Bitcoin Hardware Wallet
Special Mention: The Bitcoin Brain Wallet
Choosing the Storage Method That’s Right for You
Chapter 4:
BUYING BITCOINS
Why Not Just Mine Bitcoins?
Ways to Buy Bitcoins
Buying Bitcoins the Easy Way
Authentication Factors
The Hassle of Converting Dollars (or Other Currencies) into Bitcoins
Buying Bitcoins with Coinbase
Buying Bitcoins the Efficient Way
Buying Bitcoins from a Currency Exchange
Buying Bitcoins the Fun and Futuristic Way
Step 1: Finding Someone to Buy From

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\pref02.html#pref02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\pref03.html#pref03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec1
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec1
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec1
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec2
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec2
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec2
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec2
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec2
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec3
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec3
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec3
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec3
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec3
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec3
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec4
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec4
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec4
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch00leve1sec4
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec5
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec5
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec5
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec5
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec5
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec5
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec6
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec6
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec7
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec7
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec7
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec8
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec8
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec8
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec9
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec9
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec9
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec11
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec11
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec11
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec11
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec11
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec12
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec12
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec12
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec12
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec12
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec13
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec13
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec13
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec13
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec13
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec13
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec13
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec13
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec14
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec14
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec15
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec15
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec15
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec16
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec16
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec17
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec17
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec17
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec17
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec17
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec17
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec18
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec18
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec19
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec19
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec19
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec19
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec19
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch00leve1sec19
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec20
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec20
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec20
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec20
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec21
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec21
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec21
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec21
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec21
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec22
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec22
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec22
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec22
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec23
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec23
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec23
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec23
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec24
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec24
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec24
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec24
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec24
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec25
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec25
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec25
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec25
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec26
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec26
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec26
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec26
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec27
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec27
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec27
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec28
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec28
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec28
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec28
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec28
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec29
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec29
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec30
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec30
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec30
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec31
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec31
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec31
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec32
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec32
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec32
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec32
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec32
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec32
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec35
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec35
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec35
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec35
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec35
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec35
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec36
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec36
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec36
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec36
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec36
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec36
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec37
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec37
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec37
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec37
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec37
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec37
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec37
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch00leve1sec37
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch04
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch04
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch04
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch04
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec38
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec38
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec38
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec38
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec38
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec39
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec39
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec39
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec39
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec40
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec40
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec40
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec40
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec40
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec41
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec41
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec42
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec42
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec42
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec42
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec42
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec42
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec42
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec42
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec42
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec42
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec47
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec47
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec47
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec47
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec53
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec53
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec53
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec53
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec53
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec54
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec54
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec54
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec54
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec54
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec54
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec60
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec60
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec60
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec60
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec60
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec60
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec60
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec61
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec61
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec61
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec61
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec61
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec61
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec61

Step 2: Deciding on a Meeting Place
Step 3: Handing Over the Money and Getting Your Bitcoins
Satoshi Square
Still Don’t See a Buying Option That Works for You?
Chapter 5:
LOST AT SEA: A CRYPTOGRAPHIC ADVENTURE
Chapter 6:
WHY BITCOIN IS A BIG DEAL
A Brief History of Digital Currencies
The Dawn of Bitcoin
Bitcoin’s First Four Years
Bitcoin’s Early Impact
The Future Potential of Bitcoin
What Are the Existential Risks to Bitcoin?
What Role Might Bitcoin Play in the Future?
The Dangers of Decentralized Digital Money
Chapter 7:
The Cryptography Behind Bitcoin
A Brief Cryptography Overview
One-Way Functions
Cryptographic Hash Functions Verify Information
Public Key Cryptography
Digital Signatures
Using Digital Signatures
Why Bitcoin Needs Cryptography
Authorizing Transactions with Digital Signatures
Verifying the Validity of the Transaction History
Proof-of-Work in Bitcoin Mining
Extra Protection for Bitcoin Private Keys
Cryptographic Methods Used in Bitcoin
Cryptographic Hash Functions: SHA256 and RIPEMD160
Crowley and the Unfortunate Jelly-Filled Donut Incident
Moving Around on a Line
Elliptic Curve Digital Signature Algorithm (ECDSA)
Signing a Bitcoin Transaction Using ECDSA
The Security of Bitcoin’s Cryptography
Pseudocode for Elliptic Point Summation and Point Multiplication
Chapter 8:
BITCOIN MINING
Why Is Bitcoin Mining Needed?
A Parable of Two Generals
Applying the Parable to Bitcoin
Preventing Attacks with Mining
Distributing New Currency with Mining
How Does Bitcoin Mining Work?
How Miners Solve a Block
Anatomy of a Block
Pooled Mining
Bitcoin Mining for Profit
Theoretical Hash Rate Limits
Decentralization in Bitcoin Mining
8.5
THE STRANGE WORLD OF ALTCOINS
Chapter 9:
UNDERSTANDING THE DIFFERENT TYPES OF BITCOIN WALLETS
Wallet Software Design Fundamentals
Offline vs. Online Transaction Signing

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec62
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec62
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec62
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec62
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec62
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec62
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec62
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec63
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec63
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec63
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec63
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec63
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec63
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec63
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec63
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec63
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec63
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec67
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec67
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec68
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec68
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec68
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec68
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec68
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec68
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec68
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec68
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec68
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch00leve1sec68
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec69
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec69
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec69
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec69
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec69
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec69
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec70
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec70
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec70
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec70
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec71
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec71
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec71
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec71
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec72
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec72
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec72
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec76
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec76
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec76
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec76
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec76
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec77
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec77
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec77
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec77
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec77
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec77
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec77
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec82
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec82
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec82
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec82
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec82
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec82
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec82
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec82
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec85
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec85
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec85
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec85
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec85
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch00leve1sec85
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec90
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec90
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec90
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec90
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec91
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec91
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec92
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec92
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec92
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec92
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec92
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec93
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec93
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec93
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec94
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec94
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec96
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec96
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec96
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec97
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec97
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec97
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec97
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec98
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec98
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec98
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec98
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec98
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec99
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec99
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec99
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec99
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec99
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec99
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec99
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec100
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec100
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec100
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec100
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec101
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec101
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec101
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec101
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec101
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec101
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec102
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec102
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec102
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec102
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec102
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec103
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec103
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec103
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec103
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec103
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec103
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec104
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec104
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec104
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec104
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec104
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec104
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec104
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec105
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec105
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec105
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec105
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec105
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec106
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec106
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec106
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec106
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec106
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec106
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec107
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec107
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec107
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec107
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec107
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec107
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec108
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec108
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec108
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec108
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec108
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec109
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec109
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec109
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec109
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec109
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec109
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec109
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch00leve1sec109
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec110
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec110
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec110
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec110
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec110
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec111
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec111
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec111
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec111
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec111
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec112
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec112
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec112
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec112
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec112
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec113
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec113
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec113
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec113
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec114
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec114
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec114
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec114
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec114
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec115
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec115
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec115
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec115
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec115
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec116
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec116
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec116
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec116
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec116
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec117
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec117
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec117
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec117
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec118
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec118
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec119
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec119
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec119
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec119
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec120
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec120
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec120
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec120
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec121
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec121
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec121
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch00leve1sec121
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08a.html#ch08a
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08a.html#ch08a
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08a.html#ch08a
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08a.html#ch08a
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08a.html#ch08a
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08a.html#ch08a
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec122
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec122
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec122
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec122
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec123
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec123
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec123
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec123
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec123

Random Key Generation vs. Deterministic Key Generation (vs. Single Key Generation)
Full vs. Simplified Payment Verification
Other Common (and Not So Common) Bitcoin Wallet Features
Future Wallets
Which Wallet Is Right for You?
Additional Wallet Considerations
Chapter 10:
BITCOIN 2030
What Will a Bitcoin Be Worth in 2030?
Bitcoin Mining in 2030
A Day in the Life of a Bitcoiner in 2030
The Bitcoin End Game
Appendix A:
HELLO MONEY! A SIMPLE JAVASCRIPT PROGRAM
The Meaning of “Easy”
Three Ways to Write Bitcoin Software
General Security Notes on Bitcoin Programming
Some Upbeat Notes on Bitcoin Security
Writing Your First Bitcoin Program in JavaScript
Why Use JavaScript?
Bitcoin Core vs. Bitcoind
Preparing Your Machine for JavaScript Bitcoin Programming
Installing Node.js
Installing node-bitcoin
Starting Bitcoin Core
For Mac Hackers
For Linux Folks
Hello Money!
Part 1: Initializing the Connection with Bitcoin Core
Part 2: The Main Loop
The Bitcoin Core JSON-RPC API
Running the Hello Money! App
Limitations of Writing Bitcoin Programs That Use JSON-RPC
Appendix B:
BITCOIN PROGRAMMING WITH BITCOINJ
The Best Programming Language for Connecting to the Bitcoin Network
Installing Java, Maven, and the BitcoinJ Library
Step 1: Installing Java
Step 2: Installing Maven
Step 3: Installing Git
Step 4: Installing BitcoinJ
Creating a Starter Project for hello-money
Writing the Code for hello-money
Declarations at the Top of the Program
Initializing Our Java Objects
Connecting to the Bitcoin Network
Listening for New Money
Running and Testing the hello-money Java Program
Bye-Bye Money
Importing a Private Key
Sending the Money
Ensuring the Money Transmission
Running bye-bye-money
Gotchas When Using Wallets in BitcoinJ
Conclusion
INDEX

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec124
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec124
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec124
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec124
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec124
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec124
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec124
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec124
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec124
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec124
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec124
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec127
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec127
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec127
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec127
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec127
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec128
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec128
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec128
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec128
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec128
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec128
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec128
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec128
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec128
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec129
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec129
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec130
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec130
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec130
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec130
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec130
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec130
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec131
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec131
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch00leve1sec131
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec132
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec132
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec132
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec132
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec132
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec132
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec132
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec132
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec133
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec133
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec133
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec133
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec134
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec134
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec134
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec134
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec134
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec134
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec134
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec134
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec134
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec134
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec135
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec135
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec135
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch00leve1sec135
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec136
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec136
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec136
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec136
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec137
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec137
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec137
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec137
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec137
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec137
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec138
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec138
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec138
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec138
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec138
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec138
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec139
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec139
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec139
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec139
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec139
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec139
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec140
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec140
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec140
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec140
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec140
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec140
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec140
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec141
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec141
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec141
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec142
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec142
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec142
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec142
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec143
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec143
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec143
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec143
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec143
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec143
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec143
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec144
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec144
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec145
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec145
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec146
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec146
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec146
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec147
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec147
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec147
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec148
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec148
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec148
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec149
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec149
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec150
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec150
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec150
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec150
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec150
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec150
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec150
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec150
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec151
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec151
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec151
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec151
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec151
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec152
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec152
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec152
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec152
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec152
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec153
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec153
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec153
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec153
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec153
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec154
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec154
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec154
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec154
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec154
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec154
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec154
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#ch00leve1sec154
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec155
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec155
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec155
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec155
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec155
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec155
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec155
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec155
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec155
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec155
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec156
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec156
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec156
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec156
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec156
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec156
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec156
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec157
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec157
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec157
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec157
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec158
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec158
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec158
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec158
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec159
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec159
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec159
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec159
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec160
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec160
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec160
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec160
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec161
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec161
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec161
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec161
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec161
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec161
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec162
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec162
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec162
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec162
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec162
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec163
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec163
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec163
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec163
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec163
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec163
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec163
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec164
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec164
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec164
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec164
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec165
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec165
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec165
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec165
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec165
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec166
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec166
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec166
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec166
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec167
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec167
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec167
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec167
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec167
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec167
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec167
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec168
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec168
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec169
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec169
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec169
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec169
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec170
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec170
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec170
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec171
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec171
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec171
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec171
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec172
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec172
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec173
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec173
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec173
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec173
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec173
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec173
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#ch00leve1sec174
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\index.html#index

PREFACE
In writing this book, we wanted to explain the concept and potential of Bitcoin in a more-or-less
timeless manner. Boy, was that hard. It would have been much easier to write a book called
The State of Bitcoin Right Now: Please Disregard Everything in This Book One Year After Its
Publication. The core technology behind Bitcoin, as well as the larger technological
infrastructure around it, is rapidly evolving as this book goes to press. The debates about the
legality, price volatility, and merchant adoption of Bitcoin may already be out of date by 2015,
and who knows how they will sound in 2025.
To keep this book relevant for the future, we did our best to focus on those aspects of Bitcoin
that will remain important forever, and we tried to cover them in a way that is fun. We hope
you will enjoy our approach to this fascinating subject.

Acknowledgments
Chris Wilmer would like to thank his wife Emily Winerock and his family for their patience and
early feedback. Conrad Barski would like to thank his wife Lauren Barski and daughter Ava
Barski for their support as he was working on this book and for their patience during all the
weekends and evenings he spent to get it done.
Special thanks go to Richard Ford Burley, for substantial editorial help in the early drafts of this
book, and to Patrick Fuller, for reviewing the programming sections. Many of the great people
at No Starch Press helped us to get this book into shape, including Serena Yang, Tyler Ortman,
Bill Pollock, and others.

1
WHAT IS BITCOIN?

In the simplest terms, Bitcoin is just another currency. The term Bitcoin refers to the entire
currency system, whereas bitcoins are the basic units of the currency.1 As with dollars, euros,
yen, and gold coins, you can save bitcoins, spend them on goods and services, and exchange
them for other currencies. However, Bitcoin is the world’s first currency that is both digital and
decentralized.
A digital currency is one that can be easily stored and used on a computer. By this definition,
even dollars can be considered a digital currency, since they can be easily sent to others or used
to shop online, but their supply is controlled by a centralized bank organization. In contrast,
gold coins are decentralized, meaning that no central authority controls the supply of gold in
the world. In fact, anyone can dig for gold, create new coins, and distribute them. However,
unlike digital currencies, it’s not easy to use gold coins to pay for goods (at least not with exact
change!), and it’s impossible to transfer gold coins over the Internet. Because Bitcoin combines
these two properties, it is somewhat like digital gold. Never before has there been a currency
with both these two properties, and its impact on our increasingly digital, globalized world may
turn out to be significant.
Sometimes called a stateless currency, Bitcoin is not associated with any nation. However, you
should not consider Bitcoin to be in the same category as private currencies, hundreds of
which have existed in various forms in the past.2 Private currencies, whether issued by a
person, a company, or a nonstate organization, are centrally controlled and run the risk of
collapse due to bankruptcy or other economic failure. Bitcoin is not a company, nor does a
single person or organization issue or control bitcoins; therefore, it has no central point of
failure. For this reason, nobody can inflate the currency supply and create hyperinflation crises,
such as those that occurred in post–World War I Germany and more recently in Zimbabwe.3

Many people are asking about the motive behind the creation of Bitcoin, so let’s explore the
currency’s purpose.
Why Bitcoin Now?
Until recently, people could not send digital cash back and forth to each other in a reliable way
without a central mediator. A trusted central mediator such as PayPal can track payments and
money transfers in a privately held account ledger, but it wasn’t clear how a group of strangers
who do not trust each other could accomplish the same transactions dependably.4 Sometimes
referred to as the Byzantine Generals’ Problem, this fundamental conundrum also emerges in
computer science, specifically in how to achieve consensus on a distributed network.
In 2008, the problem was elegantly solved by Bitcoin’s inventor, known pseudonymously as
Satoshi Nakamoto. Satoshi’s significant breakthrough made it possible for a digital currency to
exist without relying on a central authority. Satoshi described the solution to the Byzantine
Generals’ Problem and the invention of Bitcoin in a white paper titled “Bitcoin: A Peer-to-Peer

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote1
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote2
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote3
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote4

Electronic Cash System.” But the creation of the software that demonstrated the concept in
practice was released a year later.
Although the first version of the software was written by Satoshi, it quickly became a
community project as the software was improved and maintained by hundreds of volunteers.
Currently, the software is open source, and anyone can read and contribute to it. In January of
2009, the first bitcoins were distributed using the early Bitcoin software, and since then
transactions have been running smoothly. Slowly but surely, an increasing number of people
have started using Bitcoin, and what began as an experiment is now a multibillion dollar
economy that processes hundreds of thousands of transactions per day (and is growing
quickly).
The Benefits of Using Bitcoin
Bitcoin is an inherently international currency; anyone can send bitcoins to anyone else in the
world, in any amount, almost instantly. In addition, it is becoming increasingly possible to travel
the world and spend bitcoins without having to change them into the local currency. Because
no middleman is involved, transaction fees are negligible. Unlike with credit cards, which
require giving online merchants your personal information, you can use bitcoins to shop online
while maintaining your privacy. There is no risk of losing your savings due to runaway inflation
because bitcoins were designed to have a fixed supply. Bitcoins are also fundamentally
impossible to counterfeit.
As a merchant, you can start accepting bitcoins as payment immediately without filling out
tedious paperwork (compared to setting up the credit card transaction process). You can also
own bitcoins without anyone else knowing, and no third party or government can seize your
money. (The privacy this feature entails may protect the security and freedom of political
dissidents living under repressive regimes, for example.)
Thanks to all of its benefits, Bitcoin continues to increase in popularity; however, anyone
familiar with Bitcoin will agree the technology behind it is difficult to explain and understand. At
first blush, it’s hard to grasp how bitcoins are stored, how they are used, or even where they
come from.

The Complexity and Confusion of Bitcoin
Rarely do we get to see the creation of a new currency, let alone one that is so different from

previous currencies. This creates major challenges in comprehension and comfort for most
people.
Bitcoin can be compared to the advent of paper currency years ago when everyone was using
gold and silver coins. Then, it must have seemed strange and confusing to attribute value to
little pieces of paper instead of precious metals. Today, paper currency feels fairly safe, and
trading paper for a purely digital asset like bitcoins seems odd. Furthermore, the economic and
social consequences of switching to a decentralized digital currency are still unclear. Even
Satoshi and the early volunteers who helped develop the concept could not have imagined
precisely how Bitcoin would be used and valued by society, much as the creators of the Internet
in the 1980s could not have predicted how transformative it would become.
Confusion also stems from the fact that Bitcoin is a truly complex technology. It relies not only
on Satoshi’s breakthrough to achieving consensus on a distributed network but also on modern
cryptographic techniques, such as digital signatures, public/private key pairs, and secure
hashing. (These cryptographic concepts are covered in detail in Chapter 7.) The issuing of new
currency occurs through a cryptographic lottery called mining that anyone can participate in.
Mining simultaneously processes transactions made by Bitcoin users. To resist abuse from
those who might want to destroy the network, Bitcoin’s design uses game theory to align the
incentives of those who maintain the network and those who want to act in their own selfish
interest. (Bitcoin mining and game theory is explained in detail in Chapter 8.)
Put simply, you cannot learn and completely understand Bitcoin in a single afternoon. However,
we hope this book will help you understand the basics of Bitcoin as quickly as possible.
What’s in This Book?
To make sense of the Bitcoin technology and phenomenon, you must view it from multiple
perspectives. This book is organized around those perspectives.
• First, we’ll look at Bitcoin from the perspective of a basic user. In Chapters 2–4 we describe
how Bitcoin works and how you can acquire, spend, and safely store bitcoins—so you can
actually start using Bitcoin.
• Next, in Chapters 5 and 6, we take a philosophical perspective on Bitcoin. Chapter 5 is an
adventure story told from the perspective of Crowley the cryptographer. Crowley gets stranded
on an island and needs to figure out how to efficiently exchange goods with inhabitants of
other distant islands. Crowley knows about Bitcoin from a chance encounter with Satoshi but
has significant doubts about the currency. In the story, he works through his doubts (which may
be similar to yours) by giving Bitcoin a chance.
Chapter 6 continues in this philosophical vein by looking at the potentially broader impact of
Bitcoin and the potentially uneasy relationship of Bitcoin and its users with nation states whose
currencies compete with Bitcoin.
• Then, we’ll look at Bitcoin from the perspective of an advanced user. Chapters 7–9 describe
the cryptographic methods behind Bitcoin, the details of bitcoin mining, and the nuances of
various third-party wallet software solutions.
• Finally, in Chapter 10, we’ll look at what the distant future might look like in a world where
Bitcoin has gone mainstream.
• For programmers and developers who are new to Bitcoin, the appendices show you how to
write your own programs to send and receive bitcoins.
As you read this book, keep in mind just how new Bitcoin is as a technology. For fields like
particle physics, Egyptian history, or constitutional law, we can turn to authority figures that
have devoted the better part of their lives to studying those subjects; by comparison nobody is
really an expert on Bitcoin. Just as there were no electricians before the discovery of electricity
or programming gurus before computers were invented, arguably no Bitcoin experts exist
today. We are all Bitcoin beginners, and no one can predict with any clarity how Bitcoin will
evolve, even a year or two into the future.
On the upside, this means that if Bitcoin becomes widely used in the future, the potential exists
for you to become one of the early experts in Bitcoin, since you are studying this technology at
such an early stage. We hope you will be inspired by the ideas behind Bitcoin and will make
your own contributions to this wonderful technology in years to come.
Now, let’s learn some Bitcoin basics.

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#ch10

2
BITCOIN BASICS

In our experience, the simplest way to get a person excited about Bitcoin is to have him
purchase something with it. That’s how we got hooked ourselves. In this chapter, we’ll help you
perform your first Bitcoin transaction, without worrying about too much technical stuff. Along
the way, though, we’ll discuss how Bitcoin works. After reading this chapter, you’ll understand
the basics of Bitcoin—enough to chat about it at any cocktail party.

How Bitcoin Works in Simple Terms
In the Bitcoin system, everyone cooperates to keep track of everyone else’s money, and as
mentioned in Chapter 1, no central authority (e.g., bank or government) is involved. To best
understand how the system works, let’s walk through an example using dollars first.
Imagine only $21 million exists in the world, and there also exists a detailed list of all the people
who possess that money. Everyone, including you (even though you have only $5), has a copy
of this list. When you give $2 to your friend, you must subtract $2 from your entry on the list
and add $2 to her entry. After informing her of the transaction, she updates her list as well. In
fact, everyone in the world needs to update the list; otherwise, the list would be inaccurate.
Therefore, not only do you need to notify your friend, but you also need to publicly announce
that you are updating the list. If you tried to cheat the system and send your friend $1000, your
cheating attempt would be easy to catch because everyone knows you have only $5 to give.
Now, imagine that all transactions are carried out on computers that communicate via the
Internet, and replace dollars with bitcoins. This is how Bitcoin works. Pretty simple actually. So
why does Bitcoin seem so complex?
The answer is threefold: First is the tricky question of how the units of any new currency system
(whether bitcoins or seashells) should be valued. Should a haircut be worth 5000 bitcoins or
0.005 bitcoins? Second, many small details are involved in implementing and using Bitcoin,
even though the overall concept is fairly straightforward. For example, how do you obtain a
copy of the list, and how are bitcoins initially distributed? Third, an entire lexicon of new and

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch01

unfamiliar words (e.g., mining) is used in the Bitcoin world.
We’ll leave the first point about the value of bitcoins for a later chapter. In this chapter, we’ll
address the last two points by explaining the major concepts used in Bitcoin, namely the Bitcoin
address, the private key, the Bitcoin wallet, and the blockchain. We’ll also briefly discuss Bitcoin
mining and walk you through the process of receiving and sending your first bitcoins so you can
see how the system works. But first, you need to understand the Bitcoin units in more detail.
Bitcoin Units
As explained in Chapter 1, Bitcoin refers collectively to the entire currency system, whereas
bitcoins are the units of the currency. Although the total currency supply is capped at 21 million
bitcoins, each one can be subdivided into smaller denominations; for example, 0.1 bitcoins and
0.001 bitcoins. The smallest unit, a hundred millionth of a bitcoin (0.00000001 bitcoins), is
called a satoshi in honor of Satoshi Nakamoto. As a result, goods can be priced in Bitcoin very
precisely, and people can easily pay for those goods in exact change (e.g., a merchant can price
a gallon of milk at 0.00152374 bitcoins, or 152,374 satoshis).
Rather than writing the term bitcoins on price tags, merchants commonly use the abbreviated
currency code BTC or XBT; 5 bitcoins would be written as 5 BTC. Despite the fact that the BTC
abbreviation has been widely used since the beginning of Bitcoin’s development, more recently
some merchants and websites have started using XBT because it conforms better to certain
international naming standards.1 As bitcoins have appreciated in value, it has become
increasingly common to work with thousandths or even millionths of bitcoins, which are called
millibitcoins (mBTC) and microbitcoins (μBTC), respectively. Many people have suggested
simpler names for Bitcoin’s smaller denominations, and one that has gained traction is referring
to microbitcoins (quite a mouthful) as simply as bits.
1 bitcoin = 1 BTC or 1 XBT
1 BTC = 1,000 mBTC
1 mBTC = 1,000 μBTC
1 μBTC = 100 satoshis = 1 bit
Now that you know the terms for various Bitcoin units, you need to increase your Bitcoin
vocabulary, so let’s talk about what is meant by a Bitcoin address.
The Bitcoin Address
Bitcoin uses a public ledger that indicates the number of bitcoins and their owners at any given
time. But instead of associating names of people with accounts, the ledger only lists Bitcoin
addresses. Each address can be thought of as a pseudonym for a person (or group of people,
business, etc.), and the use of pseudonyms is why people can use bitcoins without revealing
personal information. The following is an example of a Bitcoin address:
13tQ1fbTMB6GxUJfMqCSDgivc8fvkHEh3J

Like a bank account number, a Bitcoin address consists of a string of letters and numbers
(usually beginning with the number 1). To send bitcoins to others (e.g., an online merchant, a
friend, or a family member), you only need to know their Bitcoin address. In turn, when you
share your address with others, they can send you bitcoins. Because Bitcoin addresses are
cumbersome to type, many people use quick response (QR) codes to represent their address
(see Figure 2-1).2 For convenience, you can put your Bitcoin address, either typed or as a QR
code (or both), on your business card, personal website, or storefront (if you’re a merchant).
Although you need an Internet connection to send bitcoins, you don’t need to be connected to
receive them. For example, if you work for a charity and pass out thousands of business cards
containing your Bitcoin address and a statement like “Please consider donating in bitcoins,”
your organization can collect bitcoins while you sleep.

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#ch01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote5
ch02fig1
ch02fig1
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote6

Figure 2-1: QR codes can be used to represent arbitrary data. They are easy to scan with
smartphones and so are convenient for sharing the long strings of characters used for Bitcoin
addresses.
As you know, in traditional banking, moving money from one account to another means that
the bank would update its privately held ledger that listed every account at that bank. If a fire
or other disaster destroyed that ledger, information about who owned the assets at the bank
might be lost forever. Although Bitcoin also uses a ledger, identical copies of it are distributed
across millions of computers around the world. Consequently, no central point of failure exists,
and transactions recorded on the Bitcoin ledger are permanent and impossible to erase.
Moving bitcoins from one address to another is equivalent to sending an instruction to all of
the computers on the Bitcoin network to update each ledger in the same way.
Because all transactions on the Bitcoin ledger are public information, maintaining privacy (if
that is desired) can be a challenge. Although no personal information is on the ledger, if you
share your Bitcoin address with your friends or post it in a public place that others can associate
with your identity, your Bitcoin balance at that address will be known to everyone (including all
incoming and outgoing transactions). To enhance your privacy, you can use many Bitcoin
addresses but publicly share only some of them.3
So how do you move bitcoins from one address to another (i.e., spend them)? Well, this action
requires a private key.
The Private Key
A private key, like a Bitcoin address, is a long string of numbers and letters (usually beginning
with the number 5). As with Bitcoin addresses, QR codes are often used to represent private
keys because of their length. Each private key is paired with a single Bitcoin address and is able
to unlock the bitcoins at that address (i.e., move them elsewhere).4 The following is an
example of a private key:
5J2ae37Jwqzt7kSp9rE17Mi2LbkHXx4tzNSzbq7xDp2cQJCzhYo

Whereas a Bitcoin address is similar to a bank account number, a private key is more like a PIN:
You need it to authorize a withdrawal or an expenditure. When a transaction is broadcast to
the Bitcoin network, instructing bitcoins to be moved from one address to another, computers
on the network check whether the transaction is authorized before making any updates to the
public ledger. Specifically, they check whether the transaction has been digitally signed using a
private key. A digital signature is extra data appended to a transaction that can only be created
by someone possessing the corresponding private key. Similar to a PIN, a private key should be
kept secret. If someone obtains your private key, he will be able to spend your bitcoins.
Note that although a private key can be used to produce a digital signature, a digital signature
cannot be used to obtain a private key. Digital signatures also cannot be reused to make new
transactions; therefore, broadcasting a signed transaction to the Bitcoin network is not a risk.
This action is fundamentally different from making an online payment with a credit card. When
you use a credit card, you provide your credit card number to someone to authorize a
transaction. That number can then be reused (maliciously) to authorize more transactions that
you never intended.
Unlike a PIN, which both you and the bank know, only you know the private key. The risk you
take in this circumstance is if you lose the private key to an address in which you’ve stored
bitcoins, those bitcoins will remain locked in that address forever. Clearly, it is extremely
important not to lose your private key! Fortunately, you can easily make digital backups of your
private keys or write them on a piece of paper and keep them in a safe place. Losing your

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote7
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote8

Bitcoin address is not a problem, however, as it can be recovered from the corresponding
private key (Bitcoin wallet programs, described later in this chapter, can do this for you
automatically).
Although it’s possible to use Bitcoin with only a single address and private key, in practice most
people use many addresses, each with its own private key, and store them in a digital wallet.
The Bitcoin Wallet
A Bitcoin wallet is a collection of addresses and private keys owned by one person. Having
multiple Bitcoin addresses can help you organize your money. You may want separate
addresses for paying rent, for shopping online, and for saving bitcoins to pay for a house in the
future. So a person could have two bitcoins in his wallet that are distributed among many
different Bitcoin addresses (see Figure 2-2).
Using multiple addresses, in the form of a wallet, also helps you maintain privacy. This is
because the public ledger maintained by Bitcoin, which anyone can look at, has no way of
knowing that any two addresses are in the same wallet and are owned by the same person (as
long as that person hasn’t done anything to show that the two addresses are linked, such as
making a single purchase using bitcoins from both accounts).
To manage several addresses and private keys, people use Bitcoin wallet programs.5 Whereas
a Bitcoin wallet is an abstract concept, referring to a group of Bitcoin addresses, a wallet
program is a concrete tool that helps users with common Bitcoin tasks, such as creating new
Bitcoin addresses, sending bitcoins to others, backing up private keys, and many others. But be
aware that the terminology surrounding Bitcoin wallets is not always used consistently. Often,
Bitcoin wallet programs are called Bitcoin wallets for short, confusing these two distinct
concepts. When you save a Bitcoin wallet (perhaps to make a backup copy), you create a wallet
file, which contains information for multiple Bitcoin addresses. Later, you can load your wallet
files into a Bitcoin wallet program.

Figure 2-2: A Bitcoin wallet is an organized collection of addresses and their corresponding
private keys. Bitcoin wallet programs exist to help perform common tasks like sending bitcoins
and managing the bitcoins in your wallet.
Many Bitcoin wallet programs are available to choose from; most are free downloads and can
be run on your laptop or phone, or even in your web browser. We’ll explore the various Bitcoin
wallet programs in Chapter 3, but in this chapter we’ll use the Electrum wallet, which is open
source, cross platform, and very simple to use.

GETTING SOME “STARTER MONEY” TO LEARN ABOUT BITCOIN
You’ll need a small amount of Bitcoin (less than $1 USD) to work through this chapter. If you
have a friend who’s a bitcoiner, consider asking her to give you a little change to use for
practice. Otherwise, go to http://newbiecoins.com/, which is a site we (the authors) will
maintain as a public service and which will list other sites that are giving away small amounts of
free Bitcoin. There are usually some reputable sites giving out coins for newbies, but the
situation for such giveaways is fluid, with sites going up or down daily, so we can’t cover
specific ones in this book.

ch02fig2
ch02fig2
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote9
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
http://newbiecoins.com/

Creating Your First Bitcoin Wallet with Electrum
To follow along in this section, download and install Electrum (http://electrum.org/). If you
choose to use a different Bitcoin wallet program, most of the instructions on the following
pages should apply to it as well.
When you run Electrum the first time, you’ll be asked to create a new wallet (or restore an old
wallet, which we’ll ignore for now), as shown in Figure 2-3.

Figure 2-3: Creating a new Bitcoin wallet with Electrum
The next step is specific to Electrum; that is, it is not a standard feature of most Bitcoin wallet
programs. The application presents you with a seed, which consists of 12 randomly chosen
words, and asks you to write them down (see Figure 2-4). Electrum uses this seed to create
your Bitcoin addresses and private keys; therefore, the seed must be kept secret, similar to
your private keys. Because we’ll be dealing with only small amounts of bitcoins in this chapter,
you don’t need to be too careful just yet. However, you should start keeping these security
details in mind. A major benefit of a seed is that if you lose your computer (say, in a fire or
theft), everything—your wallet, your Bitcoin address, your private keys, and (most importantly)
your money—can be recovered from the seed.
The next step gives you the option of creating a password. Although the password is optional, it
is very important. If your computer is stolen or somehow falls into the wrong hands, the
password prevents others from spending your bitcoins. Because Electrum (and other Bitcoin
wallet programs) uses the password to store your Bitcoin wallet on your computer in an
encrypted form, the wallet is useless without the password. With many other Bitcoin wallet
programs if you forget your password, you could permanently lose access to your wallet. But
with Electrum, you can restore the wallet from your seed (without needing the password).

http://electrum.org/
ch02fig3
ch02fig3
ch02fig4
ch02fig4

Figure 2-4: Electrum presents you with a seed.
In the final step, Electrum requests instructions on how to connect to a remote server. Select
Auto connect and then click Next (see Figure 2-5).

Figure 2-5: Selecting your server connection
You should see a screen similar to the one in Figure 2-6. The green dot in the bottom-right
corner indicates that you are connected to the Bitcoin network. Congratulations! You’ve just set
up your first Bitcoin wallet! Now you can fill the wallet with bitcoins.

ch02fig5
ch02fig5
ch02fig6
ch02fig6

Figure 2-6: Here is your first Bitcoin wallet!
Acquiring Bitcoins in Your Wallet
On the Receive tab (see Figure 2-7), you should see a list of several Bitcoin-receiving addresses.

Figure 2-7: The Receive tab
You can share these addresses with your friends so they can send you some starting
bitcoins—one way to acquire bitcoins! At this point, if you want to put significant money into
bitcoins, refer to Chapter 4 where we discuss how to do this in detail (but be sure to first read
Chapter 3, for security reasons).
To get a small quantity of bitcoins into your wallet—whether from a friend or from a site listed
on http://newbiecoins.com/—you’ll have to give that friend or website one of your public
Bitcoin addresses. At the time of this writing, a small amount of Bitcoin for testing would be
about 0.5 millibitcoin (mBTC). If at the time you are reading, 0.5 mBTC is a lot of money, then
feel free to use a smaller amount. A few minutes after your friend (or the site) sends these
coins, you should see a balance of 0.5 mBTC in your Electrum wallet. (Actually, your balance will
usually update instantaneously.) Well done! You now own bitcoins, which enables you to look
into your future! How? Read on.
NOTE
Importing private Bitcoin keys into a wallet can be hazardous. You should only import money
using private keys when small sums of money are involved, and never use this method as part of
a strategy for managing larger sums of money unless you’re an advanced bitcoiner. The comic
at the end of this chapter illustrates why working with raw private Bitcoin keys can be very
dangerous.

ch02fig7
ch02fig7
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch04
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch04
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
http://newbiecoins.com/

Spending Bitcoins with Your Wallet
Although thousands of merchants now accept bitcoins, you can’t buy much with 0.5 mBTC.
You’ll need to scour the Internet for good deals!
Alternatively, for the deal of the century, you can have your fortune read online for the low,
low price of 0.1 mBTC.
Visit http://befuddled.org/ to access our fortune-telling website, which we’ve linked directly to
a crystal ball. When you send 0.1 mBTC to the server’s Bitcoin address, the server transmits a
fortune request to the crystal ball, and it predicts your future.

To get your fortune, use Electrum’s Send function and paste the website’s Bitcoin address into
the Pay to field. In the Amount field, specify 0.1 mBTC (if your units are set to BTC, enter
0.0001; change the default units by choosing Tools ▸ Preferences ▸ Base Unit). Bitcoin
transactions also require a fee. In the Fee field, enter 0.1 mBTC as well (this amount may be
more than is necessary, but let’s not worry about that for now). Your screen should look
something like Figure 2-8.

Figure 2-8: Sending bitcoins through Electrum
When you click Send, Electrum asks for your password and then confirms that the transaction

http://befuddled.org/
ch02fig8
ch02fig8

has been transmitted. Almost immediately, you should see your fortune on the website.
Welcome to the future! You’ve just made your first Bitcoin transaction!
Electrum’s History section shows you the transactions you’ve made in the past. Transactions
that display the word pending are not yet recorded on the Bitcoin public ledger (which
typically occurs about 10 minutes after a transaction is sent).
If you’re not interested in your fortune but want to practice sending bitcoins, you’ll be pleased
to know that many charities and nonprofit organizations now accept bitcoins. Some provide
food for the homeless, defend online privacy rights, and support open source software
(including Bitcoin). By searching online, you’ll find numerous nonprofit organizations that have
posted a Bitcoin address. We recommend giving your free millibitcoins to Sean’s Outpost, a
charity that feeds the homeless in Pensacola, Florida (its donation Bitcoin address can be found
on its website, http://seansoutpost.com/). Unlike with the fortune-telling website, you might
not receive a response from the website when you donate. But rest assured that the recipients
have accepted your bitcoins if Electrum’s History section displays the word confirmed.
(Sometimes the confirmation status is indicated by a small dial icon or more than one
confirmation is given for the transaction.)
You might be wondering how and where Electrum got a Bitcoin address. The answer is your
Bitcoin wallet program.
Bitcoin Addresses Generated by Your Bitcoin Wallet Program
When you run a Bitcoin wallet program, it can generate a new Bitcoin address for you offline.
No communication with the Bitcoin network is necessary, an unusual feature that surprises
many people. With other addresses or numbers, for example, when you create a new email
address, you must first find out whether the address is being used by someone else. The same
is true when get a new phone number or when you open an account at a bank. However, when
you want a new Bitcoin address, one is chosen at random from all of the possible Bitcoin
addresses. What are the odds that a Bitcoin address randomly generated for you will be the
same as one generated by someone else? We’ll use an analogy: Consider all the grains of sand
on Earth—from all the beaches and deserts. When you choose a single grain at random to be
yours and another person chooses a grain of sand at random to be his, the odds that both of
you would choose the same grain of sand would be over a trillion times more likely than the
odds that you both generate the same Bitcoin address.6
While you can create Bitcoin addresses offline, you must be online to see how much money is
in your addresses or to send money to others. That’s because these additional actions require
you to access the public ledger of Bitcoin, which we’ll discuss next.
The Blockchain
All Bitcoin transactions are recorded into the blockchain. Throughout the remainder of this
book, we’ll refer to the Bitcoin ledger as the blockchain. The reason for its name is that new
transactions are appended to the ledger in large chunks, or blocks. Whenever a new Bitcoin
transaction is broadcast to the network, computers on the network add it to a growing pool of
other new transactions. Then, about every 10 minutes, the transactions in that pool are
bundled into a block and added to the blockchain (see Figure 2-9). To function properly, all
Bitcoin wallet programs need access to an up-to-date copy of the blockchain, and every time a
block is added, the wallet programs copy and add the block to their own blockchain.

http://seansoutpost.com/
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote10
ch02fig9
ch02fig9

Figure 2-9: Bitcoin transactions are grouped into blocks that are added to the blockchain every
10 minutes.
The thousands of computers on the Bitcoin network that collect transactions and add them to
the blockchain are called miners. We’ll explain miners and the details of what they do later in
the chapter. For now, keep in mind that anyone can be a miner (including you) by running open
source Bitcoin-mining software on a computer that is connected to the Bitcoin network. At any
given moment, tens of thousands of miners are connected to the Bitcoin network. All volunteer
their computers for the purpose of adding new transactions to the blockchain (we’ll explain
why they do this in a moment).
Every block added to the blockchain is added by a single miner on the network. Then everyone
else on the Bitcoin network follows suit and updates their own copy of the blockchain (this
includes other miners and Bitcoin wallet programs). Why does only one miner add a block, and
how is it decided which of the thousands of miners it is? This is where Bitcoin gets
interesting—and a little technical.
Let’s first consider why anyone would want to update the blockchain. Certainly, if you wanted
to complete transactions, your Bitcoin wallet program would need the latest copy of the
blockchain. However, you might not want to send or receive bitcoins for months, so why bother
updating your copy of the blockchain in the meantime? For the Bitcoin system to work, many
people need to keep up-to-date copies of the blockchain. The reason is that if only one person
had the latest copy, she could manipulate the number of bitcoins people had on record.
Therefore, good will alone isn’t sufficient to keep the system running. But the lure of a reward
is always an attraction.
The Blockchain Lottery
As an incentive for users to update the blockchain as frequently as possible, Bitcoin uses a
lottery-based reward system. Many people become miners and try to be the first to add a
block to the blockchain. Then, based on some probability, a winner is chosen and gets to add a
block.
What is the purpose of using a lottery like this to run Bitcoin? Well, let’s imagine Crowley wants
to buy a $10,000 car from Clarice. (You’ll learn more about our friend Crowley the Crocodile in
the comic in Chapter 5.) Using traditional currency, two people engaging in this transaction
would probably go to a bank and have the money transferred between their bank accounts (or
use a cashier’s check, which is analogous to this; see Figure 2-10).

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#ch05
ch02fig10
ch02fig10

Figure 2-10: Crowley sending $10,000 to Clarice through a traditional bank
They would do this at a bank because they need a trusted third party (a “banker”) that manages
a “money ledger” and moves the money on the ledger from one person’s account to another.
The banker’s job is to make an announcement that Crowley and Clarice can trust; that is, to
affirm that the ledger has been updated correctly. (The banker may or may not be sporting a
monocle, wearing a top hat, and smoking a cigar.)
With Bitcoin, we also need a person to adjust a ledger, which in this case means adjusting the
blockchain by adding a block to it. It turns out anyone can fill this role, as long as he is not
connected with either party in the transaction, because that could lead to a conflict of interest.
Picking a person randomly through a lottery helps accomplish this. So with Bitcoin, a lottery
picks a random miner, who then announces to the network that certain Bitcoin transactions are
valid (see Figure 2-11).
Of course, there’s always a small chance this miner does know one of the persons involved in a
recent transaction. This is why blocks are arranged in a chain: In roughly 10 minutes, when the
next lottery winner is announced, this winner also confirms, as part of her announcement, that
she agrees with all the transactions of the previous lottery winner (see Figure 2-12).

Figure 2-11: A random person running Bitcoin-mining software is chosen to confirm Bitcoin
transactions.
In the process, each winner in the Bitcoin-mining lottery receives a reward, which is a certain
amount of bitcoins. The reward includes all of the transaction fees for the transactions in that
block, which motivates miners to collect as many transactions into a block as possible,
increasing their reward. To be eligible for the reward from the next block, which is added 10
minutes later, a miner needs to have the latest copy of the block-chain to participate in the
next round. This process is done automatically by open source Bitcoin-mining software that
runs on computers controlled by the people involved in mining. Because of this incentive
structure, thousands of miners constantly help process the transactions of Bitcoin users,
making sure that the blockchain is always up-to-date.
The reward lottery is run by the community; no central authority exists to choose a winner.
We’ll skip the technical details for now (they’re covered in Chapter 8) and just say that miners

ch02fig11
ch02fig11
ch02fig12
ch02fig12
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08

generate random numbers continuously, until they find a winning one. This takes about ten
minutes. The community then verifies (also through cryptography) that the number found by
the individual miner is the winner, and the miner adds a new block to the blockchain and
collects the reward. When this happens, the phrase commonly used is that a miner has found a
block.

Figure 2-12: With Bitcoin, each lottery winner confirms not only her own block of transactions,
but also all the preceding blocks (that she considers to be valid).
Blockchain Forking
The lottery system works as expected most of the time. But occasionally two miners find a
block at the same time, and the blockchain becomes forked, resulting in two different branches
(see Figure 2-13).
Consider the following scenario as an example: Imagine that Crowley and Satoshi are miners
and find the winning number within seconds of each other. If they are located far apart on the
Bitcoin network (say, on opposite sides of Earth), one part of the network will identify Crowley
as the winner and another part will identify Satoshi as the winner. In this case, Crowley and
Satoshi will each add a block to the blockchain (each thinking that he is the winning miner for
that round). The problem occurs when one part of the network copies Crowley’s block and the
other copies Satoshi’s. As a result, now two blockchains disagree!

ch02fig13
ch02fig13

Figure 2-13: Bitcoin miners Crowley and Satoshi find a block at the same time, creating two
copies of the blockchain. The resolution to the forked blockchain occurs when Satoshi’s version
of the blockchain adds another block before Crowley’s, and Satoshi receives the reward.
Recall that your Bitcoin wallet program needs an up-to-date copy of the blockchain to function,
but it doesn’t know how to resolve a forked blockchain. Miners and Bitcoin wallet programs
must decide which of the two versions of the blockchain to use. Forking is resolved by waiting
to see which of the two branches adds yet another block first, which will happen about 10
minutes later. Then the longer branch will be considered the true blockchain, and the shorter
branch will be ignored, or orphaned, by the entire Bitcoin network.
For most users, the process of forking and ignoring orphaned blocks goes completely unnoticed
and has no negative impact on the use of Bitcoin. In our example, only the losing miner,
Crowley, experiences a considerable impact because only one of the two miners involved can
receive the reward. The losing miner is undoubtedly disappointed, but miners expect this to
happen from time to time, so it comes as no surprise when it does.
Transaction Confirmations, Double Spending, and Irreversibility
A transaction confirmation is a common concept in Bitcoin. Some online merchants that
accept bitcoins may require one or more transaction confirmations before delivering their good
or service. Every transaction exists in some block on the blockchain. The blocks behind it are
older, and the blocks ahead of it are newer. The position of a block relative to the tip of the
blockchain is known as the block depth. The most recently added block has a depth of 1, the
block behind it has a depth of 2, and so on. The number of confirmations a transaction has is
equal to the depth of its block. So a transaction that has not been added to the blockchain (yet)
has zero confirmations; it has one confirmation when it is added in a new block; it has two

confirmations when a block is added ahead of it; and so on. The concept is simple enough, but
why do merchants require transaction confirmations?
For low-value transactions, such as buying a cup of coffee, merchants normally forgo the
transaction confirmation. You just send your bitcoins, grab your coffee, and go on your way. In
general, Bitcoin transactions are irreversible, and merchants know within a few seconds after
you click Send that you’ve paid for your drink (or whatever you’re buying). However, if a
merchant sells a high-priced item, such as a car, it becomes critical to consider transaction
confirmations.
A malicious user with very significant computational resources (think of a James Bond–style
supervillain) can try to double spend his bitcoins, which is essentially an attempt to trick the
receiver into accepting bitcoins that were simultaneously sent to someone else as well (the
“someone else” could be another Bitcoin address controlled by the supervillain). When miners
on the Bitcoin network detect two transactions that spent the same bitcoins (but were sent to
different addresses), they usually accept whichever one they received first and ignore the
second. More important, it’s impossible for both transactions to be added to a block because
one contradicts the other. The supervillain’s intent is for the merchant to ship the car but have
the transaction be ignored and not added to the blockchain.
Fortunately, this devious scheme is usually unsuccessful because many merchants use special
monitoring software and can recognize when two conflicting Bitcoin transactions are broadcast
at the same time (at which point the supervillain may be kicked out of the car dealership). An
even simpler solution for merchants to prevent this kind of payment fraud is to wait 10 minutes
until the transaction has at least one confirmation before agreeing to ship the car. However, if a
supervillain possesses truly extraordinary resources, such as many millions of dollars of
computer hardware, he can attempt to make the Bitcoin network orphan the newest block in
the blockchain, resulting in a single transaction confirmation being ignored. To cope with this
remote possibility, merchants who sell high-end goods typically wait until a transaction has two
confirmations before handing over the keys to the buyer. In general, the higher the value of the
item being transacted, the more confirmations a merchant can demand before considering the
transaction to be settled. The cost for a malicious villain to double spend those bitcoins rises
exponentially with each confirmation.
Now that you know the basic function and concepts of the Bitcoin blockchain, you’ll learn about
mining bitcoins, which is perhaps the most mysterious aspect of Bitcoin.
Mining Bitcoins
Bitcoin mining is the competitive process of collecting transactions and adding them to the
blockchain in the form of blocks. Why is it called mining? The term is derived from how bitcoins
are initially distributed. Although the total supply of bitcoins is capped at 21 million, this total is
reached slowly over time. In the beginning, the initial supply of bitcoins was zero. Bitcoin
miners receive a reward for processing other people’s transactions; each reward is a small sum
of newly minted bitcoins that increases the total supply in circulation. In this sense, Bitcoin
mining is similar to gold mining: Earth has a fixed amount of gold, and miners slowly dig it out
over time.
As mentioned earlier, miners must find a certain winning number by generating numbers at
random repeatedly to win these newly minted bitcoins. Because fast computers can generate
these random numbers more rapidly, this creates an incentive for miners to use increasingly
powerful computers to mine bitcoins. In the very early stages of Bitcoin, personal computers
were commonly used to generate random numbers, but soon people started building special-
purpose computers designed solely for Bitcoin mining. Today, mining bitcoins requires
significant capital, expertise, and access to inexpensive electricity. In fact, the evolution of
Bitcoin mining resembles the way gold mining has changed over times. At one time unearthing
gold could be done by a person panning in a riverbed, but now excavation is performed by large
companies with expensive drills.
The mining reward for finding a block has two components: The first part is transaction fees.
When you send bitcoins to someone, a small amount of additional bitcoins is added as a
transaction fee.7 Transaction fees are typically a few cents and are part of the reward that
miners receive when they win the lottery and add a new block to the blockchain. Because a
block is a collection of hundreds or thousands of transactions, the miner’s reward is the sum of
all the transaction fees in that new block. The second component of the reward is a certain

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote11

number of newly minted bitcoins.
The number of newly minted bitcoins that is provided as a reward diminishes gradually over
time. The first 210,000 blocks—which based on a 10-minute spacing took about 4 years to
mine—provided every winning miner with 50 newly minted bitcoins per block in addition to the
transaction fees. The next 210,000 blocks (blocks (210,001 through 420,000) reward miners
with only 25 newly minted bitcoins per block. Thereafter, the reward drops to 12.5, then 6.725,
and so on. Because this mining process is the only source of new bitcoins, it is the reason no
more than 21 million bitcoins will ever be in circulation.
Although every four years the number of newly minted bitcoins rewarded per block halves, the
transaction fees per block will continue to grow as the Bitcoin user base grows. Eventually, the
user transaction fees will be greater than the reward of newly minted bitcoins. At that point,
the Bitcoin network will be sustained entirely through transaction fees.
The Complexity of the Bitcoin System
Most of us are used to using centralized payment services (e.g., PayPal, credit cards). We place
our trust in the companies that run those services and don’t need to know how the payment
system works. But Bitcoin doesn’t have a company to trust; instead, we can examine the
system to decide whether or not we trust it.
If you investigated the system major credit card companies use to facilitate payments, you
might be surprised by how complicated it is. Because we don’t normally think about how digital
payment systems work, it is not unusual that the Bitcoin system is befuddling and complicated
to most. After reading this chapter, you should have a fairly good idea of how the entire system
works. In later chapters, we’ll delve further into certain details, such as the specific hardware
and programs that Bitcoin miners use; however, the overall explanation of the Bitcoin system
will not change from how it is described in this chapter. From this point on, we can focus on
acquiring bitcoins and thinking about how they’ll impact our global economy!

3
STORING YOUR BITCOINS SAFELY, SECURELY, AND

CONVENIENTLY
Unfortunately, nothing can be protected against loss with 100 percent certainty, but when
done correctly, bitcoins can be stored extremely safely and securely, perhaps more so than
any other financial asset. Stored incorrectly, however, bitcoins are vulnerable to loss due to
technical failures (e.g., a computer or hard drive failure) or everyday disasters, and they can be
an easy target for thieves as well. So before you purchase a significant amount of bitcoins, you
need to learn how to—and how not to—store them.
In this chapter, we’ll explain various methods of storing bitcoins and comment on their
appropriateness for different use cases. Some storage methods are more secure than others
but are less convenient. Once you are comfortable with the methods and concepts discussed in
this chapter, you’ll be prepared to handle bitcoins in any quantity.

Storing Your Private Key(s)
Where are your bitcoins stored? It’s a surprisingly tricky question. You must know that (1) the
amount of bitcoins in your account is recorded on the blockchain, and (2) to access those
bitcoins, you need to use a private key. The blockchain may be stored in a different location
than your private key, and because both are necessary to use your bitcoins, it would seem at
first that it is difficult to say exactly where your bitcoins are stored. But millions of identical
copies of the blockchain are distributed all over the world, and because no disaster will ever
erase every copy of the blockchain, you don’t need to worry about how and where it is stored.
Instead, you should focus on your private key. You (and only you) know your private key, so
wherever you store this key is where your bitcoins are. Consequently, storing your bitcoins
really means storing your private key. If you use a Bitcoin wallet, which is a collection of
addresses and private keys, your bitcoins are stored wherever you store that collection (usually

on a computer, phone, or portable USB drive in a wallet file).
The remainder of this chapter explains the challenge of storing your private key (or collection of
private keys) in a way that prevents accidental loss and theft. Bitcoin allows you to be your own
bank. But being your own bank comes with great responsibility and requires you to take serious
security precautions. Alternatively, you can trust a third-party service provider to be your
Bitcoin bank, in which case you won’t need to worry about security directly; instead, you’ll need
to trust your service provider to keep your bitcoins safe. Fortunately, storing bitcoins securely is
easy, even for beginners (see “Paper Wallets” on page 39).
Hot Storage vs. Cold Storage
Bitcoin storage methods are often distinguished by whether they are hot or cold, depending on
whether or not the private keys are stored on Internet-connected devices. Hot storage refers
to private keys that are stored on an online device or computer. Cold storage refers to private
keys that are not accessible via the Internet. For example, if you use an offline computer to
generate a Bitcoin address and its corresponding private key, any bitcoins sent to that address
are in cold storage. But how can others send you bitcoins if your address was generated on an
offline computer? Well, you share it with them! You can safely copy your public Bitcoin address
and post it on a website (or email it to all your friends). However, the private key exists only on
the offline computer where it was generated and remains confidential.
Because sending bitcoins requires a private key and an Internet connection, hot wallets are
more convenient to use, but cold storage methods are more secure and better suited for long-
term bitcoin storage. Note that a hot wallet cannot become cold by going offline.1 Once a
private key has been exposed to the Internet, it is unsafe to assume that it will provide the
same protection as one that was never exposed.
Sometimes, companies may advertise that they store their clients’ Bitcoin funds in cold storage
as a security feature but will simultaneously claim that those funds can be conveniently moved
to a hot wallet automatically. This is a red flag. If any company states that it has an automated
process for transferring funds from cold to hot wallets, most likely none of its funds are stored
in cold storage. Cold storage requires a person to physically access an offline computer and
manually authorize a Bitcoin transaction. You’ll learn how to do this in “Storing Large Amounts
of Bitcoins” on page 38.
Personal vs. Hosted Wallets
Many companies offer Bitcoin wallet services and programs to help you store your bitcoins. To
the uninitiated, it isn’t always clear whether these companies offer a personal wallet or a
hosted wallet. With a personal wallet, you and only you know the private keys. The company
that created the software does not control your bitcoins. Alternatively, with a hosted wallet, a
third party knows your private keys and doesn’t reveal them to you, but the company will send,
receive, and store bitcoins on your behalf (not unlike a traditional bank, which stores your cash
in a vault and won’t give you the keys to open it). Some companies also offer software as a
service. In this case, they host the wallet software on their servers but not the private keys.
Users can log in, send and receive bitcoins, and monitor Bitcoin transactions using their own
private keys (which the company never receives). We refer to such services as online personal
wallets because the private keys are not hosted.
With both wallet types, the user interfaces may look and function in similar ways, but the
ramifications of using one kind of wallet versus the other are quite different. In particular, the
question of who is liable if bitcoins are stolen may be determined by who had access to the
private keys. If you’re in doubt, ask whether you have access to the private keys.
NOTE
The liability distinction can become blurred if multiple private keys are used to control the same
bitcoins. A few online services require two private keys to spend the same bitcoins, one held by
the company and the other by the customer. Assigning liability can be trickier in these cases
(although as you’ll see later in “Fragmented Private Keys and Multi-Signature Addresses” on
page 41, using multiple private keys to store bitcoins is typically a good idea).
The benefits of using a hosted wallet are that it is user-friendly and you don’t have to worry
directly about Bitcoin storage security. However, the hosting company must be both
trustworthy and competent in that it will not maliciously run away with your bitcoins or let
thieves steal them. Another detail to consider is that government or law enforcement officials

ch00leve1sec29
ch00leve1sec29
page_39
page_39
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote12
ch00leve1sec28
ch00leve1sec28
ch00leve1sec28
ch00leve1sec28
ch00leve1sec28
page_38
page_38
ch00leve1sec32
ch00leve1sec32
ch00leve1sec32
ch00leve1sec32
ch00leve1sec32
ch00leve1sec32
page_41
page_41

can ask a hosting company to hand over your bitcoins. The company might oblige this demand,
even if you would have disputed the request.
Although hosted wallets may be a popular choice for many future Bitcoin users due to their
user-friendliness, we’ll focus on personal wallets. Even if you decide to use a hosted wallet and
let someone else manage the safety and security details, this chapter will help you make an
informed decision when you’re choosing hosted wallet service providers.
Safety, Security, and Convenience
Consider three major factors when you’re comparing storage methods:
1. Safety (preventing the accidental loss of bitcoins)
2. Security (preventing the theft of bitcoins)
3. Convenience (ability to easily and quickly spend your bitcoins)
These factors can sometimes conflict with each other. Methods that make it convenient for
you to spend your bitcoins are probably inadvertently making it easier for a thief to spend
them as well. Similarly, making many copies of your private key and giving them to friends and
family for safekeeping is a good strategy to prevent accidental loss; however, this strategy also
makes it more likely that your private key will fall into the wrong hands. Combining safety,
security, and convenience into one storage method is an area of constant innovation, and some
newer methods have demonstrated an excellent balance of all three (see “Special Mention: The
Bitcoin Hardware Wallet” on page 42).
Most people use two storage methods: one for storing small amounts of bitcoins conveniently
but less securely and another for storing large amounts less conveniently but very securely. As
Crowley the Crocodile illustrates in the comic at the start of this chapter, this is similar to having
a small amount of cash in your pocket but keeping most of your money in a traditional bank
account.
In the following sections, we’ve grouped storage approaches into two categories:
• Methods for small amounts of bitcoins that are convenient, easy to use, and reasonably safe
• Methods for long-term storage of large amounts of bitcoins that are extremely safe and
secure (but not as convenient)
Storing Small Amounts of Bitcoins
Many easy-to-use methods for storing bitcoins are handy, but they all share one fundamental
weakness: A sufficiently sophisticated attacker could potentially breach the layers of security
and access your bitcoins from a remote location. However, this situation is not that different
from the same event happening with traditional online banking. A hacker in a remote location,
whether just on the other side of town or in another country, could drain your bank account by
stealing your identity and deciphering your login credentials. For example, if you access your
online bank account using a laptop, a malicious program could monitor your keyboard presses
(i.e., a keylogger) and steal your password. Banks remedy this weakness by implementing
strict daily withdrawal limits or other measures that mitigate the impact of fraudulent access.
With Bitcoin, the best mitigation strategy is to store the majority of your funds in cold storage,
which cannot be accessed remotely, and to use the more convenient methods for daily
spending only.
Three reliable and easy-to-use methods for sending and receiving small amounts of bitcoins are
described in the following subsections:
• Online hosted wallet services
• Online personal wallet services
• Personal hot wallet
Online Hosted Wallet Services
As discussed briefly earlier in this chapter, online hosted wallet services are popular because
they tend to be easy to use, and users don’t typically need to know about Bitcoin’s inner
workings. No software installation is required; users just sign up and log in to their wallet via a
website using a web browser. Online hosted wallets seem familiar because they work like most
traditional financial services. For example, when you open a bank account, the service handles
your money on your behalf and manages all transfers, deposits, bill payments, and security
measures. The same holds true of a hosted Bitcoin wallet: Although the bitcoins are yours, they
are not directly in your possession (because you do not have access to the private keys). If the
wallet service provider goes bankrupt, for example, you may lose your bitcoins.

ch00leve1sec35
ch00leve1sec35
ch00leve1sec35
ch00leve1sec35
ch00leve1sec35
ch00leve1sec35
page_42
page_42

Many providers hold bitcoins on behalf of hundreds or thousands of people and have invested
in significant security measures. But it’s difficult to know for sure whether the service provider
is secure enough if it doesn’t reveal the details of its storage methods. Be cautious; if you are
able to access your hosted wallet using just a username and simple password, that is a warning
sign that your provider might be vulnerable to online attacks (if you can access your bitcoins
easily, so can a thief). Quality wallet service providers, such as the U.S.-based company
Coinbase (which also offers convenient ways to buy bitcoins; see Chapter 4) require the use of
two-factor authentication for users to access their bitcoins. Two-factor authentication requires
the use of a phone, or another secondary device, in addition to a username and password.
Unfortunately, because the Bitcoin world is so new, no hosted wallet provider can claim a long
track record of incident-free bitcoin storage.2 For this reason, at this time we recommend that
you do not trust any third parties with large amounts of bitcoins. Also, note that hosted wallets
offer the least amount of privacy when you use bitcoins, because the provider knows who you
are, the number of bitcoins you have, and all of your incoming and outgoing transactions.
Online Personal Wallet Services
Online personal wallets, like the My Wallet service provided by Blockchain .info,3 look and
behave much like hosted wallets but with a key difference.4 These wallet services provide you
with the tools to send and receive bitcoins, but they don’t know your private key. Instead, once
the website loads locally on your device, (i.e., is no longer communicating with a distant web
server), you generate your private keys from a password you type in. Whenever you send
someone bitcoins, a signed transaction is sent to the web server, but your password (and hence
your private keys) never leave your device. Fundamentally, this means these services cannot
steal your funds. In addition, if the company goes bankrupt or otherwise disappears, you are
only inconvenienced temporarily and none of your bitcoins are lost.
Although just as easy to use as hosted wallets, online personal wallets place a much greater
responsibility on the user. Typically, you access these wallets online via a username and
password, just as you would a hosted wallet, but if you forget your password, in this case you
have no recourse. Because the service providers don’t know your passwords, they cannot help
you recover them.5 If you use this method, be sure to write down your password in multiple
secure places!
Online personal wallets often offer much greater privacy than hosted wallets, especially if they
don’t require any personally identifying information to register an account. But the service
provider may keep track of usage patterns and other data that could subsequently be
requested by law enforcement.
Personal Hot Wallet
Like the Electrum wallet discussed in Chapter 2, a personal hot wallet is a software program
that runs on a device you own. Because no third party is needed to operate a personal hot
wallet, using one maintains the spirit of decentralization that underpins Bitcoin. These
programs give you complete control over your bitcoins without sacrificing convenience.
However, an even greater responsibility is placed on you than if you use an online wallet
service. Your private keys are saved on the same device that connects to the Internet and
communicates with the Bitcoin network (the defining feature of a hot wallet); therefore, you
need to be vigilant about protecting your device from malware, viruses, and other hacking
attempts that could lead to theft.
Is hacker theft likely to happen to you? To become a target of an attack, you would have to
keep a large amount of bitcoins in your hot wallet and have advertised this information
somehow. Both conditions are not recommended! Using a personal hot wallet is like carrying a
traditional physical wallet; it’s unlikely that you’ll get mugged, but you shouldn’t keep too much
cash in your wallet or wave it around just in case.
As with a physical wallet, you can lose your hot wallet. If you are storing your private keys on
your computer, keep in mind that your computer might be lost, stolen, or destroyed—and the
bitcoins in your hot wallet might be worth more than the computer! Fortunately, unlike a
physical wallet, you can back up your Bitcoin wallet. However, be mindful of where you store
your backups. You may want to avoid using cloud storage, for example.
Many personal hot wallets are available (a full discussion of the different choices is provided in
Chapter 9). Electrum (http://electrum.org/) and Multibit (http://multibit.org/) are

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch04
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#ch04
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote13
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote14
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote15
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote16
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
http://electrum.org/
http://multibit.org/

recommended. Both are open source, have been in use for many years, are available on most
platforms, and are lightweight (don’t require significant computer resources). The original hot
wallet, Bitcoin Core (formerly Bitcoin-Qt; http://bitcoin.org/), requires significant computer
resources to run; therefore, casual users may opt not to use it.
Storing Large Amounts of Bitcoins
Cold storage methods, as described earlier, require physical access to information that is not
accessible via the Internet. These five storage methods dramatically reduce the risk of theft:
• Paper wallets
• Encrypted paper wallets
• Offline transaction signing
• Fragmented private keys
• Multi-signature addresses
Instead of worrying about cyber-thieves, you only have to worry about local burglars (and only
those who are Bitcoin-savvy). Most of these methods are suitable for safely storing large
amounts of bitcoins for long periods of time. However, if you are storing a large Bitcoin fortune,
consider having a security expert audit your storage method.
Note that you can safely experiment with any of these five methods using an online computer,
as long as you use small amounts of bitcoins. Once you are comfortable with a particular
method, you’ll need either a dedicated offline computer (preferred) or at least a computer you
can take offline temporarily.
When you’re evaluating cold storage methods, it’s handy to have the open source Bitcoin
wallet generator at http://bitaddress.org/.
NOTE
You can download the entire website at http://bitaddress.org/ and run it on your computer
after you disconnect from the Internet.
When you first access the website, you’ll be asked to move your cursor over a box of letters and
numbers (or type letters) randomly to provide a source of randomness that the site uses to
generate a Bitcoin address. The reason you need to do this that it is very challenging for
computers to generate random numbers by chance because they follow strict instructions,
making the results more predictable. For unimportant applications, such as playing Solitaire on
your computer, a mediocre random number generator used to shuffle the virtual deck is no big
deal, but for storing money, high-quality randomness is very important.
Paper Wallets
Using a paper wallet is perhaps one of the simplest and most popular cold storage methods.
This involves generating a Bitcoin address and private key on an offline computer and then
writing both down on a piece of paper but not saving a copy of the information on the
computer itself. You can then store the piece of paper in a file cabinet, a personal safe, or in a
safety deposit box at a bank. With the piece of paper safely locked away, you can continue
sending bitcoins to the associated Bitcoin address for safekeeping. When you eventually decide
to spend your saved bitcoins, you can use the import private key or import paper wallet
function that most Bitcoin wallet programs include. At this point, your bitcoins will no longer be
in cold storage.
If you want to spend only some of your saved bitcoins and keep the rest in a paper wallet, after
importing your private key into a hot wallet, you should immediately store the remainder of
your bitcoins in a new paper wallet (paper wallets are one-time use only). But be sure to
prepare the new paper wallet ahead of time before importing bitcoins from the old paper
wallet.
NOTE
Alternatively, you can spend a fraction of your paper wallet bitcoins by using a technique known
as offline transaction signing, which is described in “Offline Transaction Signing” on page 40.
Provided you keep the paper private key in a safe place, the paper wallet method is suitable for
storing large amounts of bitcoins indefinitely. However, keep in mind such physical risks as
flooding and fire. Also, do not scan, take photos of, or expose your paper private key to other
methods of duplication, or you will compromise your paper wallet. Your bitcoins are only as
safe as the least secure method by which you store your private keys. In particular, consider
that some office photocopiers maintain records of every document they copy. The safest way

http://bitcoin.org/
ch00leve1sec31
ch00leve1sec31
ch00leve1sec31
http://bitaddress.org/
http://bitaddress.org/
page_40
page_40

to make a duplicate of your paper wallet, which is recommended, is to clearly handwrite a few
extra copies and store those copies securely.
Encrypted Paper Wallets
The encrypted paper wallet method was invented to further improve the security of the paper
wallet method. Essentially, instead of writing down the private key on a piece of paper, you
write down an encrypted version of it. The only way to decrypt your private key is with a
password you choose, preventing thieves from accessing your private key and your bitcoins.
Hundreds of encryption schemes can be used for this purpose, but the most common scheme is
BIP38 encryption.
NOTE
The Bitcoin developer community maintains a wish list of features called Bitcoin Improvement
Proposals (BIPs), and this encryption standard is #38 on the list (features that have been
implemented, such as this one, are still often referred to by their BIP numbers).
To create a BIP38-encrypted paper wallet (go to http://bitaddress.org/ and shake your mouse
back and forth until you’ve generated enough random data and the Paper Wallet tab appears),
you choose a passphrase and then generate a Bitcoin address with its associated encrypted
private key. Your private key should start with the number 6, as opposed to a normal private
key, which starts with the number 5.
NOTE
In computer science, passwords typically serve one of two functions: Either they are used to
authenticate a user by asking the user to provide a password at the appropriate time, or they
are used to encrypt data. For authentication, one can often get away with a short, word-length
password (even though it is typically still a bad idea to do this). However, passwords used for
data encryption must always be long: If they are shorter than 40 characters, they are often easy
to crack. Hence, when passwords are used for this purpose, as we discuss in this section, it is a
common convention to call them passphrases instead.
But be forewarned: If you forget your passphrase, you’ll permanently lose access to your
bitcoins. Therefore, it’s best to also write down your passphrase and store it in a different
location than the paper wallet. As with ordinary paper wallets, make backup copies of the
encrypted paper wallet to protect against flooding, fires, or theft. Always assume that your
wallet is unsafe to ensure you are being vigilant about safety. If your encrypted paper wallet is
stolen, use your duplicate copy to import your bitcoins into a hot wallet, and then store them in
a new encrypted paper wallet. Even if a perpetrator eventually determines your passphrase,
you will have moved your bitcoins by then.
Offline Transaction Signing
Offline transaction signing is the entry-level security method for Bitcoin businesses or serious
users who regularly handle large amounts of bitcoins. This method requires two computers and
is considerably more advanced than using paper wallets. One computer has a personal hot
wallet that works just like Electrum, but the private keys are omitted. Therefore, when you click
send bitcoins, you will be asked to perform an extra authorization step using a second
computer, which contains the private keys and is not connected to the Internet. This second
offline computer also has a Bitcoin wallet program installed and only functions to authorize, or
digitally sign, the transaction. You use the offline computer to create a file that contains the
digitally signed transaction, which you then copy to the online computer and broadcast to the
Bitcoin network (see Figure 3-1).

http://bitaddress.org/
ch03fig1
ch03fig1

Figure 3-1: A schematic of how an offline and online computer work together to securely sign
Bitcoin transactions without exposing a private key to the Internet
The online computer never ascertains the private keys. Offline transaction signing is similar to
having a financial administrator with no signing authority write checks that then need to be
signed by an authorized person before being mailed out. Although this method is very secure
and can be used to store fairly large amounts of bitcoins, making many transactions per day can
be a cumbersome process. One potential risk is losing the private keys stored on your offline
computer; therefore, you should make backups of those private keys for reliable, long-term
storage. Another risk is that your private keys may be compromised if your offline computer is
stolen or seized.
An advantage of offline transaction signing instead of just importing keys from paper wallets is
that a cold-to-hot storage transition never happens. Your bitcoins are always in cold storage,
even when you spend from the address where they are stored.
You can use the Electrum offline transaction-signing feature, provided you have two
computers. Another highly recommended wallet for offline transaction signing is the Armory
Bitcoin Client (http://bitcoinarmory.com/), which is open source and designed with maximum
security in mind. Armory offers many advanced security features, and if you are serious about
highly secure Bitcoin storage and are an advanced Bitcoin user, you should certainly explore
this option.
Fragmented Private Keys and Multi-Signature Addresses
Fragmented private keys and multi-signature addresses involve splitting into pieces the
information required to spend bitcoins and storing them in disparate geographic locations.
Both techniques achieve extremely high levels of Bitcoin storage security and safety. As
enterprise-level Bitcoin security strategies, they are (or should be) implemented by large
Bitcoin businesses (major currency exchanges, hedge funds with Bitcoin assets, etc.). Let’s look
at each strategy in turn.
Fragmented Private Keys
Using a cryptographic trick known as secret sharing, a Bitcoin private key can be divided into
many fragments, and only a certain number are required to reconstruct the key. This is
sometimes referred to as an “m of n” private key, where m and n stand for the necessary
and available number of fragments. For example, a private key might be split into five
fragments, but any three can be used to reconstruct the key, making a “3 of 5” private key.
None of the individual pieces on their own reveal any meaningful information about the private
key. This strategy is very useful for highly secure Bitcoin storage because companies can store
each fragment in a separate, safe place; if one fragment gets damaged or compromised, the
bitcoins will still be safe. In addition, other fragments can be used to move the bitcoins to a new
address. Several different cryptographic protocols are used for secret sharing, but the most
popular is Shamir’s Secret Sharing method, for which organizations can easily find open source
implementations on the Web.
Multi-Signature Addresses
Using multi-signature addresses, or multiple private keys, as opposed to using a single private
key in multiple pieces, also provides a similar level of highly secure storage. Bitcoins are stored

http://bitcoinarmory.com/

in an address that requires more than one private key to use them. Companies can specify how
many keys exist and the number required to spend the stored bitcoins; for example, if three
keys are specified, any two keys could be sufficient to complete a transaction. For safekeeping,
businesses can also distribute these keys to different people if the organizations don’t want to
entrust a single person with the authority to move bitcoins. For example, a Bitcoin bank can
ensure that no single employee (even the CEO or president) is solely able to move customers’
funds. Each employee at the Bitcoin bank can have his own private key, with all of the keys
corresponding to the same Bitcoin address, but no single private key is sufficient to move the
bitcoins. To authorize the transfer of bitcoins from the bank’s Bitcoin address, multiple
employees need to use their private keys to digitally sign the transaction. One main difference
exists between multiple private keys and multiple fragments of a single private key: With
multiple private keys, at no point does one person ever have complete control, whereas with
multiple fragments of a single private key, the person who combines the pieces to construct the
private key has complete control. Using multiple private keys is an extremely secure and
responsible way to manage very large amounts of bitcoins.
Special Mention: The Bitcoin Hardware Wallet
The hardware wallet is a relatively new Bitcoin storage method. It is a small device that fits in
your pocket and stores your private keys in such a way that no one can extract them from the
device. The hardware wallet acts as the offline computer in the previously mentioned offline
transaction-signing method, but it is more convenient because you can plug it into your online
computer. Your bitcoins are never at risk, even if you have viruses on your online computer.
When you click send bitcoins in your Bitcoin wallet software on the online computer, you then
need to confirm the transaction on the hardware device—usually by pressing a button. The
hardware wallet uses the internally stored private keys to sign a transaction, which is then sent
to the online computer.
This method is almost as convenient as using the personal hot wallet, but it is more secure
because it is impossible for your private keys to be exposed to the Internet. Your bitcoins on the
device will always be in cold storage. One downside to this method is that you need to
purchase a piece of hardware, as opposed to just downloading a free open source program.
Another disadvantage of using your hardware wallet is that you can lose it, which might result
in lost bitcoins (although some hardware wallets provide ways to back up your bitcoins).
Although the hardware wallet is an excellent combination of convenience and security, you
might not want to rely on one to store your bitcoins for decades, because no data is yet
available on the lifetime or durability of such devices.

TREZOR
One brand of hardware wallet that has received a lot of attention is Trezor
(http://www.bitcointrezor.com/). We find the Trezor hardware wallet to be an excellent,
relatively easy-to-use use device, but because Trezor devices are new, there is still the
possibility that a bug or security flaw is yet to be discovered (as is true, in principle, of Bitcoin
itself).
Created by SatoshiLabs, the Trezor (see Figure 3-2) is a small device that “stores your bitcoins”
(that is, it stores your private keys). When you want to spend your bitcoins, you use a USB cable
to plug the Trezor into a laptop. It doesn’t have to be your own laptop; you can use a complete
stranger’s laptop and still safely spend your bitcoins. This is, perhaps, the defining feature of
the Trezor: It doesn’t require you to trust the laptop that you plug it into. This is helpful if
you’re traveling and don’t have your own laptop with you: You can use any computer at your
destination. Since most bitcoins are stolen by exploiting security holes in smartphones and
laptops, using the Trezor dramatically cuts down on the risk of Bitcoin theft. So how does it
work?

http://www.bitcointrezor.com/
ch03fig2
ch03fig2

Figure 3-2: The Trezor device
Smartphones and laptops are also devices that can store private keys, but unlike the Trezor,
they treat those keys like any other data, i.e., as information that can be viewed, copied, or
modified. Viruses on a laptop can search for the private key data, copy them, and broadcast
them to a remote server, leading to stolen bitcoins. The Trezor, on the other hand, never allows
the private key data to be viewed or copied by you or a virus. Instead, when you want to spend
bitcoins, it uses its internal private keys to sign a transaction that it then gives you. The Trezor is
like a paranoid chef who will never reveal his secret recipe but will cook for you anytime you
want.
Configuring the Trezor is slightly laborious (it may take 5–10 minutes for beginners), but this
does not need to be done more than once.
1. Plug the Trezor into your laptop.
2. Visit https://mytrezor.com/. Install the necessary plugins so that your laptop knows how to
communicate with the Trezor. You may need to restart your browser to continue once the
plugins are installed.
3. Navigate to https://mytrezor.com/ again. The website will recognize that your Trezor has
not been configured yet and will ask you to give your device a unique name. Enter a name and
click Continue.
4. Enter a new PIN using your laptop.
5. Enter the PIN again to verify you did not make a mistake in the previous step.
6. The Trezor device will now display a recovery seed so that you can recover your bitcoins in
case you lose your device. This is the only time that the Trezor will ever reveal (indirectly) its
private keys (they are derived from the seed). Once the configuration process is done, the
private keys can never again be viewed or accessed. Write down the recovery seed on a piece
of paper (or two), and store it in a safe place.
7. Congratulations, you are ready to use your Trezor! If you have bitcoins stored elsewhere, you
can send them to your Trezor by clicking Account ▸ Receive to find a receiving Bitcoin
address.
Operating the Trezor is much simpler:
1. Plug the Trezor into a laptop.
2. Open a Bitcoin wallet program on the laptop that is configured to work with the Trezor (or
visit https://mytrezor.com/, a website created by SatoshiLabs designed specifically for Trezor
users).
3. On the laptop, choose how many bitcoins you want to spend and where you want to send
them. Click Send.
4. The Trezor will ask you to enter your PIN. (This is to prevent someone from being able to

https://mytrezor.com/
https://mytrezor.com/
https://mytrezor.com/

steal your Trezor and spend your bitcoins.) Enter your PIN using the laptop.
5. The Trezor will display the transaction details. Press the corresponding button on the Trezor
to confirm (or the other button to deny) the transaction. The Trezor will now create a signed
Bitcoin transaction and send it to the laptop.
6. The laptop automatically broadcasts the transaction to the Bitcoin network. Your bitcoins
have been sent!
These steps take only a minute to carry out and are quite convenient for tasks like online
shopping (the Trezor was not designed, however, to be used at a point-of-sale terminal like the
cash register at a coffee shop).
The Trezor also supports advanced features, such as the use of passwords (in addition to the
PIN) and hierarchical deterministic wallets for multiple accounts. These features are more than
we can cover in this little box, but you are encouraged to check out the Trezor website
(http://www.bitcointrezor.com/) for more details. At the time of this writing, the Trezor is
selling for about $120, but you can pay only with bitcoins.
Special Mention: The Bitcoin Brain Wallet
Using the brain wallet to store bitcoins is a unique and somewhat mind-blowing technique. In
this method, you store bitcoins entirely in your brain by memorizing your private key. We
should note in advance that this storage method is impractical in several respects and
recommended only for Bitcoin/cryptography experts. Because nothing tangible exists to steal
or seize, you can use this method to store your bitcoins when you don’t have control over your
physical environment (e.g., living in a dorm room, crossing through security checkpoints, etc.).
However, you must create a long, unforgettable passphrase that you can commit to memory,
especially if you will be storing large amounts of bitcoins. Then you feed the passphrase into a
computer program (running on an offline computer) that accepts any text as input and outputs
a private key and Bitcoin address. In the following example, the passphrase is short and easy to
guess, so your stored bitcoins would be at risk.
passphrase: "bitcoin for the befuddled" <--- way too short
private key: 5JS1PoX1e7b48VnBtaeYohJvoe8NTGBTdBa9KELJR9UjoeL9ukx
bitcoin adddress: 1EjtJ53dXFT7cmP5ETiQuyc9fPy96FEPBh

However, the following passphrase is sufficiently complex.
passphrase: "crowley likes beaches, lisp programming, ravioli and
sasquatches
conradbarski chriswilmer nostarchpress"
private key: 5Ke7Unhs9Ghc4UmhVZXptjPZiVFn48fnN1xGeoctsKrHdpdJtAD
bitcoin address: 1FqwT4844gvjP6GCELW5NaR1gMCQKRcaSP

After generating your passphrase on an offline computer, you ignore the private key and copy
only the Bitcoin address. You do not want to store the private key anywhere, even on an offline
computer. You’ll need the private key when you want to move your bitcoins, and at that point
you can re-create it from your memorized passphrase (and import it into a Bitcoin wallet, like
Electrum, or use it for offline transaction signing). By not storing the private key anywhere, you
prevent others from stealing it from you, either physically or digitally. You can write down your
passphrase and keep it hidden in a safe place, of course, but then it wouldn’t strictly be a brain
wallet (however, it can be a good idea).
Brain wallets are useful for reasonably long-term storage (a few years) of significant amounts of
bitcoins, but they are not convenient for day-to-day transactions. Also, storing large amounts of
bitcoins in a brain wallet for decades could be risky, because you might forget the password.
Additionally, people are inherently deficient at choosing passphrases that computers cannot
guess, and increasingly powerful computers might be capable of guessing every possible
passphrase that a human could generate. For very long-term storage of large quantities of
bitcoins, it is safest to use a randomly generated private key (with a high-quality source of
randomness).
Choosing the Storage Method That’s Right for You
The best storage route to take is to start small and choose an easy storage method that you’re

http://www.bitcointrezor.com/

comfortable with (see Figure 3-2). Keep in mind that human error while using a complicated
Bitcoin storage scheme is a real risk factor. Once you’re more comfortable with how Bitcoin
works, you can gradually increase the amount of bitcoins you own and the level of security you
use.
Although no system is 100 percent secure, you can store your bitcoins more securely than gold
or traditional currencies. Storing bitcoins might seem less secure than having cash in a
traditional bank account, but the reason might be simply that many people feel less
comfortable with unfamiliar technology. Someday we might look back and think it should have
been obvious that a decentralized currency that is impossible to counterfeit and is built on
cryptographic principles is more secure than traditional currencies.

Figure 3-3: A summary of Bitcoin storage methods. These strategies span the spectrum from low
security (but convenient) to high security (but inconvenient). This chart is not comprehensive
because new methods are constantly being developed. For example, one of the best methods on
this chart, the hardware wallet, was not possible until 2014, five years after the start of Bitcoin.

ch03fig2
ch03fig2

4
BUYING BITCOINS

Buying bitcoins is essentially just like buying any other kind of currency. Think about the various
ways in which you typically exchange US dollars for Japanese yen or Mexican pesos. For small
amounts of money, you could probably find a friend to exchange a few dollars for the currency
you want. For moderate amounts, you can visit a currency exchange shop, like those at most
international airports, which is convenient but charges high fees. If you want to exchange
thousands of dollars or you are a currency day trader and don’t want to pay high fees, you need
to register an account at a major currency exchange. All of this is true for bitcoins as well,
except that the infrastructure is not yet as well developed as it is for traditional currencies
(right now, an airport currency exchange shop probably couldn’t tell you the difference
between a bitcoin and a banana).

The bottom line is that you have many different ways to buy bitcoins, even today: You can buy
them locally, from your friends or those in your area; you can buy them from middlemen, both
online and in brick-and-mortar stores; or you can buy them from major Bitcoin currency
exchanges. It’s important to remember that whenever you buy bitcoins, you are buying them
from someone who has them already (exchange services merely facilitate this transfer);
bitcoins are not sold directly from a Bitcoin company. Therefore, no individual sets the price of
a bitcoin; the price is decided collectively by those who buy and sell them every day (i.e., by the
free market).
Why Not Just Mine Bitcoins?
Although you can obtain bitcoins by mining them, it is not easy (or free) to do so. Unless you
plan to quit your day job and become a full-time Bitcoin miner (see Chapter 8), it’s not practical
to obtain significant amounts of Bitcoin through mining. Bitcoin mining requires highly
specialized computer hardware, cheap electricity, and a high degree of patience.
Ways to Buy Bitcoins
Broadly speaking, you can buy bitcoins in three main ways:

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08

• The easy way: Through middleman companies

• The efficient way: Through currency exchanges

• The fun and futuristic way: Through person-to-person purchases

Middleman companies make money helping people buy bitcoins easily, with a minimum of
fuss. These companies usually have decent customer service and shield you from needing to
understand all the complexities of currency trading. However, like all middlemen, they charge a
fee for this convenience.
A more efficient way is to buy bitcoins directly from a Bitcoin exchange. Exchanges directly
connect people buying and selling bitcoins using a sophisticated currency exchange system.
These exchanges are somewhat advanced and can be intimidating for a beginner. However,
exchanges are where most large Bitcoin purchases and sales happen. For this reason,
exchanges usually offer the best prices for purchasing bitcoins. Also, by purchasing directly
from an exchange, you minimize the number of parties involved in a large purchase, which
decreases the risk of a problematic transaction. For large Bitcoin purchases ($5,000 or more),

always deal directly with an exchange. Using an exchange is also a good choice for smaller
purchases, as long as you have the time and inclination to learn the ins and outs of how a
currency exchange works.
Simply buying bitcoins directly from folks in your area, person-to-person, is the most fun
because you get to meet others interested in this new currency. Of course, trading money
directly with strangers might make some people uncomfortable. But most bitcoiners believe
that person-to-person purchases are most likely the wave of the future. Some hope for a more
decentralized world in which large corporations become obsolete as technology makes it more
practical and convenient for people to interact directly. Perhaps someday face-to-face
exchanges will become the most efficient, cheapest, and fastest way to buy bitcoins.
Buying Bitcoins the Easy Way

At this time, the easiest way to buy bitcoins is through an established Bitcoin middleman, more
accurately called a Bitcoin exchange intermediary. Exchange intermediaries consist of
companies that have already registered their own accounts on one or more Bitcoin exchanges
and will buy or sell bitcoins on your behalf. Typically, exchange intermediaries offer to sell
bitcoins only at the market price; you can’t set your own price. Additionally, these companies
may only convert currency in one direction. For instance, during the 2013 Bitcoin price run-up,
many folks new to the Bitcoin community wanted to purchase bitcoins quickly. Not surprisingly,
many businesses that traded bitcoins for dollars, but not necessarily dollars for bitcoins, quickly
appeared to fill this need.
There are also clear benefits to using a middleman, however. The paperwork involved is
minimal, and many services offer to get you bitcoins in mere minutes (as opposed to days or
weeks). The fees typically range from 1 to 10 percent, but the service and customer support are
often better than with exchanges.
NOTE
Bitcoin intermediaries are roughly analogous to PayPal, which acts as a middleman to help you
make Internet purchases using your bank account. If you’ve used PayPal, you’ll find that using
an exchange intermediary is a very similar experience.
Table 4-1 lists some popular exchange intermediaries. You should try to choose a company that
charges the lowest fees and offers the best user experience. Be sure to check online for reviews
of these services and try to find out if they have a good reputation in the Bitcoin community
before making your decision. Many of these services operate only in limited geographical
regions, so some might not be available to you.
Table 4-1: Popular Bitcoin Exchange Intermediaries
Company
name

Services offered* Location Established

Bitcoiniacs Buying or selling bitcoins at market price;
brick-and-mortar Bitcoin store

Kelowna,
Canada

2013

BTCquick Buying bitcoins using a credit card Denver, CO 2013
Circle Buying and selling bitcoins via bank or

credit card.
Boston, MA 2013

Coinbase Buying and selling bitcoins at market price;
Bitcoin wallet hosting

San Francisco,
CA

2012

ch04table1
ch04table1

* Only a partial description of services
WARNING
Unfortunately, many times in the past fraudulent and poorly run companies have been involved
in the buying and selling of Bitcoin. Undeniably, in the future this may be true of any of the
companies we mention in this chapter. It is your own responsibility to properly vet specific
companies before trusting them with your money.
Before we walk you through the exact steps involved in buying bitcoins from one of these
companies (see “Buying Bitcoins with Coinbase” on page 58), we first need to discuss a couple
of technical concepts. One concept you absolutely need to understand is two-factor
authentication, which is a way to do online transactions (as well as a framework for thinking
about such transactions) that can greatly reduce your risk of getting hacked and/or robbed.
Another concept we need to discuss is the difference between reversible and irreversible
financial transactions. Understanding this difference helps explain why long waiting periods are
often involved when acquiring bitcoins from service companies.
Authentication Factors
Since the dawn of digital technology, many methods have been conceived for computer users
to prove their identities: passwords, iris scans, key fobs, face recognition, and several others.
However, all of these security measures can be defeated. If you enjoy science fiction movies,
you’re familiar with the myriad ways this can be done.

However, you can overcome these weaknesses by organizing the many authentication methods
into three main categories and then choosing two to use. This is known as two-factor
authentication. The three categories are as follows:
• Something you know: Your password, your first pet’s name, your signature, and so on
• Something you own: A key fob, your smartphone, and so on
• Something you are: Your fingerprint, your face, your eyes, your voice, and so on
It turns out most of the weaknesses in each of these categories are very different. That means
that if you pick two authentication methods in two different categories, it will be far more
difficult for a hacker to break into your account. This is what we mean when we say two-factor
identification. We will discuss an example of this in practice shortly.
The Hassle of Converting Dollars (or Other Currencies) into Bitcoins
One common criticism of bitcoins is that it can be such a hassle to obtain them. Typically, you’ll
wait several days before you can buy bitcoins with your dollars through an exchange
intermediary. People are often mystified by the fact that they can buy items on Amazon in 10
seconds but that it takes many days to buy bitcoins, no matter where people try to buy them.
Reversible Transactions
The reason, surprisingly, is that the world economy as it currently exists is built around
contracts and reversible transactions. Transfers of financial value between two parties usually
involve very similar steps, whether we’re dealing with a credit card payment, check deposit,
bank wire, stock purchase, or mortgage loan. Any financial asset that is typically tracked in a

ch00leve1sec47
ch00leve1sec47
ch00leve1sec47
ch00leve1sec47
page_58
page_58

financial ledger (which nowadays includes most things besides paper cash) are handled in this
way. The steps are as follows:
1. One of the parties, or both parties together, draft a legally-binding contract. Sometimes
this contract is written out formally (such as when you initiate a mortgage loan) and sometimes
it is made implicitly based on previously agreed-upon terms. For instance, when you enter your
credit card information into Amazon, you are bound by a contract you signed ahead of time
with your credit card issuer, a contract that stated that you would honor the debt incurred by
using your credit card in this way.
2. The terms of the contract are broadcast to all affected parties. If you initiate a bank wire,
your bank, as well as the bank receiving the funds, will be notified about the bank wire request.
Similarly, someone selling decorative soaps on Amazon would be notified that you used your
Visa card to purchase a bottle of raspberry hand soap. At this point, there is usually still some
leeway for the parties to still opt out of the contract, in a time period which may be called a
settlement period (or a hold or rescission period, depending on the type of asset and the
exact circumstances involved.)
3. The purchased assets are delivered and financial records are updated. After a period of
time, once the banks have updated their ledgers, the balance from the bank wire shows up in
the recipient’s bank account. Similarly, your raspberry hand soap is handed off to the post
office for delivery.
The crucial step in this process is that the information entered in the bookkeeping ledgers by
your bank (or at E-Trade, the mortgage company, or the soap seller) is really meaningless in
terms of determining who “owns” an asset—these ledgers have no legal bearing. The only way
to know whether you own the money in your bank account, the money in your Paypal account,
or a share of Google at E-Trade is to look at the original contracts. If somebody contacts your
bank and says, “Actually, all the money in Bob’s account belongs to me because Bob and I
signed this contract that proves this is the case” and this person can go through the many legal
hurdles required to prove that that money indeed belongs to her, Bob’s money will not be safe
at that bank. It does not matter whether the bank’s internal ledgers say he is entitled to that
money.
The bottom line is that because legal contracts almost always remain open to dispute and
because ledgers maintained by banks, mortgage companies, E-Trade, Amazon, etc., are all
subject to the legal system, it is reasonable to argue that our traditional financial system is
based upon financial transactions that are reversible. Unless there are statutes of limitation
that supersede the original contracts years into the future, the settlement period we
mentioned in step two is indefinite.
This is true in theory and in practice. All of the following types of transactions can be (and
frequently are) reversed by at least one person involved in the transaction days after the fact
(and usually also weeks or months after the fact):
• Bank wires
• Credit card transactions
• Mortgage loan contracts
• Stock purchases
• Check deposits
For some of these transactions, the only party that can reverse the purchase may be the larger,
more powerful entity involved in the transaction. For instance, you may not be able to change
your mind about the share of Google you bought a day ago, but you wouldn’t be surprised to
learn that E-Trade makes you wait 10 business days before pulling that share out of your E-
Trade account and will be more than happy to take that share away from you if the bank wire
you used to fund that share is reversed by your bank after the fact.
Irreversible Transactions
However, there are some types of financial transactions that are completely irreversible. The
most common transaction of this type is a transfer of physical, paper money. If the ATM
machine goes crazy one day and spits out $10,000 in cash that you don’t actually own and you
decide to bury that money in the woods that evening, no legal contract, action by the bank, or
action by the government will ever be able to recover that cash; if you decide not to tell them
where you buried this money, it is not directly reachable by the legal system.1
Bitcoins have this same property, which is why people sometimes call it digital cash. If you give

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote17

somebody bitcoins using a standard Bitcoin transaction, nothing you can do or say can ever
reverse that transaction. Such a transaction is enforced using pure mathematics and is not a
party to any legal contract, in itself.
Combining Reversible and Irreversible Assets
Now we can finally understand why it is often a hassle to buy bitcoins. When you buy an
irreversible asset using a reversible asset it leads to something call an impedance mismatch:
While it is possible to build efficient financial systems that involve reversible transactions (our
modern financial system) and those that involve irreversible transactions (as is currently found
in the world of cryptocurrencies), it is difficult to exchange assets between these two
categories.
This is why banks have such strict cash withdrawal limits at ATMs and why it can take several
days to buy a bitcoin. In both cases, the institution has no way of reversing the irreversible
transaction if something goes wrong and needs to take extra precautions that the reversible
half of the transaction has a high probability of completing successfully before agreeing to the
transaction, especially if large amounts of money are involved.
NOTE
If you are sent raspberry hand soap by mail via an Amazon purchase, this is arguably also an
irreversible transaction. However, such products, if obtained fraudulently, are hard to sell to
another party (unlike Bitcoin). This is another reason why an online seller of soaps is less at risk
of fraud than a company selling bitcoins.
Why Irreversible Transactions Are Arguably Superior
Many people, when they hear that Bitcoin transactions are irreversible, will have the following
thought: “I kind of like the fact that I can reverse a credit card transaction if someone sells me a
deficient product.” However, it is still straightforward to perform reversible transactions with
Bitcoin. Many systems exist for doing this, usually using a feature in Bitcoin called multi-
signature transactions, which we will discuss in some detail in later chapters.
It is true that currently, with standard Bitcoin transactions, the protections a buyer has when
buying something off of the Internet are not as strong as those built into the credit card system.
This is a weakness of Bitcoin and something the Bitcoin community needs to strive to resolve.
But the fact is that both reversible and irreversible transactions are useful depending on the
circumstances. For instance, if you are selling a bicycle to a stranger for $100, you probably
wouldn’t want a potentially reversible asset in exchange, such as a personal check. Instead, you
would say to the stranger, “cash only please” (or maybe “Bitcoin or cash only please” after you
finish this book).
Therefore, because Bitcoin allows for reversible transactions wile your Visa credit card will
never allow for a strictly irreversible transaction, one can argue that irreversible financial
instruments are superior: They are a more basic building block on top of which more
complicated forms of transactions can be built, including reversible financial transactions with
enforcement via traditional contracts, if desired.
In conclusion, we believe it can be a bit unfair to criticize the design of Bitcoin for the fact that
bitcoins are hard to purchase with a credit card or bank wire. Part of this difficulty is caused by
the design of the traditional financial system itself.
Buying Bitcoins with Coinbase
In the United States, the most popular Bitcoin exchange intermediary by far is Coinbase. Let’s
walk through the steps of buying bitcoins using Coinbase. As with all of the methods of buying
bitcoins that we will discuss, it is prudent to start small; buy only modest amounts of bitcoins
until you are comfortable with the process.
NOTE
If you decide to use another middleman instead of Coinbase, the steps involved are roughly the
same, even if some of the details are different.
Step 1: Registering at Coinbase
To register at Coinbase, go to http://coinbase.com/, and choose Sign Up. Then enter your
email address and choose a password (Figure 4-1).

http://coinbase.com/
ch04fig1
ch04fig1

Figure 4-1: Sign Up screen for Coinbase
Click Create an Account. At this point, Coinbase will send an email to your account to have the
address verified.
Step 2: Setting Up Two-Factor Identification
The easiest way to set up a second authentication method is to run an app on your iPhone or
Android phone that proves you own a phone with a specific phone number. Coinbase lets you
do this. Once set up, your two-factor authentication for your Coinbase account will be:
1. Something you know: Your Coinbase password
2. Something you own: Your smartphone
Currently, Coinbase uses an app called Authy that you can install on your phone from the
iTunes App Store or Google Play Store. After installing this app on your phone, configure it by
following the instructions, which require you to enter your phone number and verify your email
address again.
Now you’re ready to use Authy to link your phone to your Coinbase account. After logging into
Coinbase, go to Account Settings and verify your phone (Figure 4-2).

Figure 4-2: Account Settings screen for Coinbase
Click Verify A Phone and enter your phone number. Authy will detect that you’re trying to link
to Coinbase and display a Coinbase option (Figure 4-3).
Choose Coinbase in Authy to display a code, which Coinbase will ask for as the next step.
Enter the code to verify your phone.
Now, if others try to access your Coinbase account, they’ll need to not only know the Coinbase
password but also have access to your smartphone.
Step 3: Linking Your Bank Account to Coinbase

ch04fig2
ch04fig2
ch04fig3
ch04fig3

To purchase bitcoins in Coinbase, you need to link your Coinbase account to a bank account.
Log into Coinbase, choose Buy/Sell, and then choose Payment Methods. Click Add Bank
Account and provide your bank account information (Figure 4-4).

Figure 4-3: The Authy app detects your use of Coinbase.
Most likely, you’ll have to wait several days before your bank account is fully verified. Then
you’ll be ready to continue with step 4 of the instructions.

ch04fig4
ch04fig4

Figure 4-4: Screen for entering bank account information on Coinbase
Step 4: Buying Bitcoins on Coinbase
With your bank account confirmed, you can place your first Bitcoin order. Figure 4-5 shows the
screen you’ll see when you click Buy/Sell.
This screen is self-explanatory: You simply type in the number of bitcoins you want to buy and
then click Buy Bitcoin. After confirming your purchase, Coinbase will transfer the dollar
equivalent of these bitcoins from your bank account. After waiting a few more days, you should
have your first bitcoins!

Figure 4-5: The Buy Bitcoin screen on Coinbase

ch04fig5
ch04fig5

Step 5: Protecting Your Shiny New Bitcoins
When your bitcoins are available, Coinbase will notify you via email that your bitcoins are in
your Coinbase wallet. But because your Coinbase wallet is managed by Coinbase, if Coinbase
ever crashes, gets hacked, or goes bankrupt, your funds could be at risk. Consequently, you
should take some extra steps to protect the bitcoins you’ve bought.
Although Coinbase might be a trustworthy company and has a marginal chance of going
bankrupt, why take even the slightest chance of losing your bitcoins? By simply transferring
your coins from your Coinbase wallet into your own self-managed wallet, you can make sure
the risk of loss from a third-party company are zero percent.
NOTE
Be sure to read Chapter 3 to learn about personal wallets and safe Bitcoin storage.
In the past, bitcoins stored in wallets managed by Bitcoin middlemen and Bitcoin exchanges
have been lost. Nowadays, the risk of this happening is much lower due to the maturation of
the financial Bitcoin ecosystem. Nonetheless, it’s always smart to store your bitcoins on these
sites only for the absolute minimum amount of time possible. Bitcoin makes it extremely easy
to manage your own money. Take advantage of this ability and don’t trust the management of
your money to an exchange intermediary.

BITCOIN ATMS: THE ULTIMATEBITCOIN MIDDLEMEN?
As previously stated, one of the annoyances of purchasing bitcoins at this time is that buying
them can be a bit cumbersome due to traditional financial instruments, like credit cards and
bank wires, being reversible. But the most obvious irreversible financial instrument is the
almighty dollar bill. If a person hands you a dollar bill, that person can’t reverse that transaction
(short of being charged with physical assault).
Consequently, an ATM-like Bitcoin-buying device would make it extremely convenient to simply
buy bitcoins using paper dollars. Such a machine could let you purchase bitcoins very quickly,
because both currencies involved would be irreversible. The convenience of an ATM that
charges comparable fees to Coinbase’s could potentially make it the ultimate Bitcoin
middleman. And, indeed, some Bitcoin ATMs have been built and have proven very popular.
The first was set up in a coffee shop in Vancouver, Canada.
However, it is impossible to know whether such ATMs will ever be widespread or be completely
legal in the United States. The reason is that dollar bills and bitcoins share more than just
irreversibility. They also both allow for a certain amount of anonymity. For this reason, a Bitcoin
ATM would indirectly be a fantastic tool for anonymizing money for money laundering and
other nefarious purposes. And, unfortunately, many countries will not hesitate to ban anything
that can aid a criminal, even if it would be tremendously beneficial to law-abiding citizens.
Therefore, it’s difficult to predict how commonplace Bitcoin ATMs will be in the future.
Buying Bitcoins the Efficient Way

The most efficient way to buy bitcoins is directly from a currency exchange. This requires a bit
more time and has a steeper learning curve than using a middleman, but it is a somewhat safer
and more cost-effective way to buy a large amount of bitcoins.
NOTE
Using a Bitcoin exchange is similar to using a brokerage account (like E-Trade or Ameritrade). If
you’ve done any online equity trading, most of the information in this section should be familiar.

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03

At a currency exchange, you can deposit money in one currency and offer to exchange it for
another currency at a rate that you choose. For example, you could offer to exchange $1 for
100 bitcoins, but you might find few takers. Other users who already own bitcoins might be
equally generous and offer to trade their bitcoins for $100 million. Neither party is likely to
have its offer satisfied. However, by raising your bid and other users lowering their ask, you
will eventually meet in the middle and an exchange will take place. At popular exchanges, at
any given moment, thousands of bids and asks are submitted for a wide range of offered rates.
But the official rate is usually a number in between the highest bid and the lowest ask.
NOTE
The more users involved in the offering, the closer the bid and ask rates tend to be. But it’s
theoretically possible for the highest bid to be $200/BTC and the lowest ask to be $300/BTC, in
which case it is difficult to say what the real exchange rate.
Many Bitcoin currency exchanges are available to choose from, so which one should you
register with? The currency exchanges make their money by charging a small fee for every
trade (usually less than 0.5 percent), so basing your choice on the fee structure is one
possibility. However, more important than fee structure are security, regulatory compliance,
and trade volume. Many Bitcoin exchanges have been running successfully without issue for
years, but some exchanges have been hacked (i.e., robbed) in the past or pressured by
government authorities into shutting down for not obeying financial regulations. Trade volume
is also an important factor to consider when choosing an exchange. The larger the trade
volume, the more likely you are to get a fair price for your bitcoins, and the more bitcoins you
are able to buy and sell per day. A small currency exchange that trades only 10 bitcoins per day
on average will not be able to fill your bid orders quickly if you are trying to buy 100 bitcoins.
Large trade volume is also indicative of the trust in and security of the currency exchange.
Of the three factors to consider when choosing an exchange, only trade volume information is
easy to find. Table 4-2 lists exchanges that have reasonably high volume. In lieu of concrete
information about a currency exchange’s security practices and regulatory compliance, it is
advisable for beginners to do business only with exchanges that have been operating for
several years. The reason is that presumably, any issues with security or regulatory compliance
have already been resolved or the exchange wouldn’t exist. This statement may seem unfair to
new exchanges, because they might even offer better security than older do exchanges. But
when it comes to matters of money, being cautious is justifiable.
Table 4-2: Bitcoin Exchanges with Reasonable Volume
Exchange name Currency pairs offered Physical location Established
ANXBTC AUD/BTC, CAD/BTC,

CHF/BTC, EUR/BTC,
GBP/BTC, HKD/BTC,
JPY/ BTC, NZD/BTC,
SGD/BTC, USD/BTC

Hong Kong, China 2011

Bitstamp USD/BTC Bank in Slovenia, HQ in
UK

2012

BTC China CNY/BTC China 2011
BTC-E EUR/BTC, RUR/BTC,

USD/BTC
Ukraine* 2010

CampBX USD/BTC Atlanta, Georgia, USA 2011
Cavirtex CAD/BTC Canada 2011
Kraken EUR/BTC San Francisco,

California, USA
2012

* It is not exactly clear which country BTC-E is located in, because this company maintains a
certain level of anonymity. If you’re thinking to yourself, “Why would I send my money to a
company if I don’t even know what country it’s located in?” then we think you’re asking a very
sensible question.
The country in which you live and the currency you want to exchange for bitcoins are also
factors in choosing an exchange. Some exchanges facilitate only USD to BTC operations,
whereas others offer multiple currency pairs.

ch04table2
ch04table2

You might notice that some Bitcoin currency exchanges offer currency pairs you have not heard
of—for example, LTC, FTC, TRC, PPC, XPM, and so on. These other digital currencies—called
alternative coins or altcoins—were created after, and largely inspired by, Bitcoin. To learn
more about such digital currencies, check out “The Strange World of Altcoins” on page 181.
Many exchanges also have different BTC/USD exchange rates! This means you can sell bitcoins
at a higher price on one exchange and buy them for a lower price on the other exchange. So
this is free money, right? Well, yes and no. If the price difference is substantial and you are the
first person to notice it, then indeed you have an opportunity to make some free money.
However, you do need to keep in mind the amount of work it takes to transfer non-Bitcoin
money in and out of exchanges; your time and effort aren’t free. But more than likely, others
will have noticed this difference before you and will have seized the free money opportunity,
which is known as taking advantage of arbitrage. Any remaining difference in price between
exchanges reflects the costs, due to trading fees and transfer fees (and other factors beyond
the scope of this book), of moving money from one exchange to another. If one Bitcoin
exchange rate is substantially different from all the others, it may indicate an underlying
problem and probably should be avoided.
Additionally, it is important to remember that a currency exchange is not a bank. You should
not leave significant amounts of money, whether fiat currency or bitcoins, sitting your exchange
account. After purchasing bitcoins, transfer them to your personal Bitcoin wallet for
safekeeping.
Buying Bitcoins from a Currency Exchange
Currently, no clear front-runner exists among the Bitcoin currency exchanges. Therefore, the
following are general steps that you should apply to any Bitcoin exchange.
Step 1: Setting Up an Account and Linking to Your Bank Account
The first steps when buying bitcoins on an exchange are identical to the steps you used with
Coinbase: Go to the exchange’s website, create an account, and then connect it to your bank
account. Some exchanges cannot be directly linked to your bank account and instead require
you to send money via a bank wire or another method.
Step 2: Transferring US Dollars to Your Exchange Account
Bitcoin exchanges are different from exchange intermediaries in that they don’t transfer the
dollar equivalent from your bank account. On these sites you first need to transfer just dollars
to your exchange account before you can turn them into bitcoins.
Step 3: Placing an Order to Buy Bitcoins
Once you’ve funded your exchange account with bitcoins, you can participate in the exchange
market by placing an order for bitcoins. Usually, an exchange site will let you enter two types of
orders: market orders and limit orders. Let’s explore the properties of each order type so you
can determine which is right for you.
Market Orders
By placing a market order, you specify that you want to buy bitcoins immediately at the best
price currently available. The advantage of market orders is that they are executed quickly, so
you won’t have to wait for your bitcoins. Closing an order quickly is valuable if you have reason
to believe the price will soon increase.
However, market orders have several important shortcomings. First, because you’re specifying
that you’ll take any price to obtain your bitcoins quickly, there is always a rare chance the
Bitcoin price might exhibit a momentary spike, forcing you to pay a much higher price than
expected.
Second, if a commodity (any commodity, in fact) is traded at a low volume, it usually will also
have a large spread, which is a large gap between the current best buy price and best sell price.
Traders commonly make a guess as to the fair value of a commodity by taking the average of
the buy and sell prices. If a commodity has a large spread, the price you’ll pay at a market buy
price will be significantly higher than the theoretical true price. Therefore, you should use
market orders only for commodities that are traded at a high volume, which would have a small
spread. For the most part, bitcoins have a relatively high volume at the large exchanges. So you
might be satisfied paying this small premium for your bitcoins in exchange for getting your
coins immediately.
Another more nebulous risk with market orders is that they make it possible for your order to

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08a.html#page_181
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08a.html#page_181

be manipulated if another person learns about your order ahead of time, even if only by
milliseconds. An outside person, a person inside the exchange company, or even the actual
company that knows about your order in advance could buy some coins before your order is
processed and then resell them to you at a slightly inflated price.
NOTE
Surely you’ve heard about the recent high-frequency trading shenanigans on Wall Street, some
of which involved similar tricks with market orders.
Limit Orders
To buy bitcoins with a limit order, you specify that you don’t want to pay more than X dollars
for each bitcoin and that you’re willing to wait until you can get this price. Typically, you’ll name
a price lower than the current market price for bitcoins; then you’ll wait for the price to drop to
your price target. The risk with a limit order is that if the price of bitcoins keeps rising nonstop
after your order is placed, your order will never execute. However, usually enough small market
fluctuations occur in the Bitcoin markets that most limit orders with a limit close to a recent
trade price will be successful.
Despite the extra time involved in obtaining your coins and despite the fact that your order may
never be executed, a limit order has more advantages than a market order. For this reason, if
you can wait to get your bitcoins, it’s best to always use limit orders.
One advantage of using limit orders is that you won’t be surprised by an unexpectedly high
purchase price because you’re the one who gets to decide on the ceiling for the price. Another
advantage is that you can get a decent price, even if the trading volume on the exchange is low
(with a large spread). Still another advantage is that other parties have more difficulty
manipulating limit orders.
One final advantage is that limit orders are considered market-making orders by the operators
of the exchanges. In essence, this means limit orders narrow the spread of a commodity by
putting a new price on the table, whereas market orders widen the spread by eliminating
prices. Although most current Bitcoin exchanges charge identical fees for market and limit
orders, in other financial markets, limit orders often are available at a discount due to the
benefits they offer the exchange operators. Therefore, in the future it is likely that Bitcoin
exchanges will offer special discounts for limit orders on bitcoins as well.
Buying Bitcoins the Fun and Futuristic Way

As stated earlier, the fun and futuristic way to buy bitcoins is person to person. Today, it is
relatively easy to find other bitcoiners online who live in your vicinity and meet them to buy
bitcoins for cash. It can be fun to meet other people with whom you share an interest in
bitcoins. Of course, some risk is always a possibility when performing financial transactions with
strangers, so person-to-person transactions aren’t for everyone. But we’re currently seeing a
major renaissance in person-to-person transactions in many fields.
Recently created businesses—such as Airbnb (a service that helps people privately rent out
rooms), RelayRides (a service that lets you rent out your car), and Moxie Jean (a site for
reselling children’s clothes)—have proven that in our modern world most people are actually

rather trustworthy. Additionally, if a good online rating system is available to mitigate cheating,
you can perform financial transactions with strangers with relative safety.
These facts drive home one of the central lessons of the Bitcoin revolution: Technology can
help society become more decentralized and less reliant on traditional, top-down companies
and governments to perform many useful tasks. For this reason, person-to-person Bitcoin
transactions are likely the future and might one day be faster, safer, and more cost-effective
than any other Bitcoin-buying method.
Step 1: Finding Someone to Buy From
Your first step when finding a Bitcoin seller might be to simply ask your friends and family if
they want to exchange bitcoins with you. Perhaps your uncle, niece, or cousin’s best friend has
a large amount of bitcoins. Also, by searching local Bitcoin listings, such as the listings
maintained by LocalBitcoins.com, you can find people in your area who might be willing to
meet up to exchange bitcoins. Other popular local listing sites, like Craigslist, sometimes list
people who want to exchange bitcoins for dollars or vice versa.
When you’re dealing with strangers, it’s always best to find out whether they’ve previously
engaged in successful Bitcoin transactions. LocalBitcoins.com also has a rating system that can
help you determine this information. If no information about the sellers is available, purchase
only a small amount from them the first time.
Step 2: Deciding on a Meeting Place
Any public place should be fine for a Bitcoin transaction; the most popular choice is usually a
coffee shop. Keep in mind that you’ll be carrying cash, so make sure you park your car in a
public area if you’re driving.
If you are performing a large transaction and want more safety, several additional options may
be available to you. Some banks are more than happy to lend you a conference room for a
business transaction, so be sure to ask. (They might charge a fee for this.)
NOTE
For very large Bitcoin transactions, you can’t rely on an informal process. Instead, you’d be
smart to get legal representation, write up a formal contract describing the transaction, and
perform the trade in a law firm’s office.
Step 3: Handing Over the Money and Getting Your Bitcoins
You are at the coffee shop and are face-to-face with the seller. What happens next? Well, it
depends on whether you want to use a Bitcoin escrow service as part of the transaction. We’ll
explain how escrow works shortly, but let’s assume you’re not using an escrow service for this
transaction (most person-to-person transactions are done without escrow).
A Face-to-Face Bitcoin Purchase Without Escrow
By convention, the person who posted the online ad is paid first. Because most Bitcoin ads are
for selling bitcoins, you (the buyer) will hand an envelope containing your dollars (or other fiat
money) to the seller first. (Typically, people who place ads have established a long transaction
history on LocalBitcoins.com, so it’s only fair they get their payment first.)
The Bitcoin seller should then send the agreed-upon number of bitcoins to the public Bitcoin
address in your Bitcoin wallet. Be sure to ask the seller to include a reasonable transaction fee
in the transaction (currently, 0.0001btc is a reasonable fee). Within a few seconds, you should
receive notification on your smartphone or laptop (connected to the Internet) that the money
has been sent to your wallet.
For small transactions, you can now consider the exchange complete! However, for larger
transactions, ask the seller to wait for additional confirmations in the blockchain. The first
transaction confirmation should arrive in approximately 10 minutes and reliably guarantee that
the money was transferred correctly. However, for very large transactions, you may want to
wait for up to six confirmations just to be safe.
NOTE
Some wallet apps on your computer may not show the number of confirmations by default. In
this case, try hovering your mouse over the transaction in question. Likely a pop-up hint will
appear that will give you this information.
Problems During Person-to-Person Transactions
Most transactions are straightforward and successful, especially if the seller has an established
history of legitimate transactions. However, in the rare cases that problems arise, two types of

complications tend to occur.
One is getting robbed on your way to the coffee shop: This happens when the seller has set up
a meeting simply as a ruse for a convenient robbery. To avoid this scenario, be cautious if a
seller asks for too many details about your appearance or the type of car you drive. These
questions should raise a red flag.
The other dangerous scenario plays out as follows:
• You: “Okay, here’s the envelope with my $500.”
• Fraudulent Seller: “Okay, I just sent the bitcoins to your address. We’re done!”
• You: “Hold on a second; I didn’t get a notification that the money arrived.”
• Fraudulent Seller: “I sent it properly. You’re a beginner and don’t know what you’re doing.
Now you’re going to have to wait an hour for the money to show up because blah blah blah. I
can’t wait here all day; it’s your fault you messed this up. Gotta run.” (The fraudulent seller
then tries to hurry out the door with your envelope.)
Again, this type of scenario rarely happens and is of course outright theft. You can avoid it by
dealing only with sellers who have a solid reputation. You can also avoid it by relying on a
Bitcoin escrow service, as discussed next.
A Face-to-Face Bitcoin Purchase with Escrow
One of the benefits of Bitcoin is that the Bitcoin blockchain has a builtin scripting language that
allows you to use some convenient and secure techniques that are impossible with other types
of money. One such technique is a multi-signature transaction, which gives you additional
safety when performing Bitcoin transactions with another person. A multi-signature transaction
requires multiple people to agree to a payment before it can be completed. In finance-speak,
this allows you to set up a Bitcoin escrow service. An escrow service is a third party that holds
on to an amount of money and makes sure the transaction goes smoothly before releasing the
cash. However, a multi-signature transaction is more elegant than a traditional escrow service.
Theoretically, a conventional escrow service can abscond with the money, but this is impossible
with a multi-signature transaction. This is because the third party does not actually have full
control of the money—it is merely an arbitrator that can only make a binary decision as to
whether or not the buyer or seller deserves the funds. Also, because multi-signature
transactions are baked in to the Bitcoin system, they are very inexpensive to use, if not free.
NOTE
Even though multi-signature transactions are technically a slightly separate concept from
escrow services, we’ll still use the term escrow service for the remainder of this discussion.
Currently, the most popular way to set up a Bitcoin escrow service is to use Bitrated
(http://bitrated.com/), which is free at this time (although you need to choose an independent
arbitrator, some of whom charge fees).
In addition, be aware that LocalBitcoins.com offers a similar escrow service, although it does
not use Bitcoin’s multi-signature feature. Therefore, you would need to trust the
LocalBitcoins.com website with your money. Also, it is more expensive than using Bitrated.
NOTE
It’s also technically feasible to set up a similar escrow system without an arbitrator. Instead of
requiring the arbitrator to side with the buyer or seller to process the transaction, the buyer and
seller can commit to a multi-signature transaction where they have to agree with each other.
However, the money simply ends up in a black hole if a dispute transpires between the parties
involved. The benefits of using this system are saving the expense and avoiding the complexity
of dealing with an arbitrator. But this type of escrow is less popular because of said black hole.
Because most person-to-person transactions are completed without a Bitcoin escrow service,
you’ll need to make sure the seller agrees if you intend to use this service. Not everyone is
familiar with this concept yet. If you and the seller agree to use the service, your face-to-face
transaction should go as follows:
1. The Bitcoin seller sends the bitcoins to the escrow service.
2. As the buyer, you verify that the bitcoins are in the escrow account as promised.
3. You hand the seller your envelope of dollars (or other fiat currency).
4. The seller signs off on the escrow, and you get your bitcoins.
As a result, at no time can the seller abscond with your dollars without sending bitcoins.
Satoshi Square
If meeting with strangers one-on-one makes you uncomfortable, you may be interested in

http://bitrated.com/

going to a Satoshi Square event. Several major cities, such as New York, San Francisco, Boston,
Toronto, and Vancouver, have had regular live Bitcoin exchanges where large groups of people
meet in public spaces to buy and sell bitcoins. These meetups are also called buttonwood
exchanges, named after the buttonwood tree under which the original Wall Street traders
supposedly traded in the 1700s.
Still Don’t See a Buying Option That Works for You?
If none of the options discussed in this chapter meet your needs for acquiring bitcoins, you
have another alternative to acquire bitcoins that is probably better than any other: Sell
something to bitcoiners for bitcoins! Die-hard bitcoiners dream that someday they’ll be able to
relinquish all fiat currencies. Someday, we can imagine, you won’t need to buy bitcoins with
other money, because bitcoins will be the money.

As you can see, Satoshi was able to sign a message with his own private key and thus prove to
Crowley that he (Satoshi) owned a certain Bitcoin address. To understand how this is possible,
you need to learn about a weird asymmetry that mathematicians discovered a long time ago:
1. It’s very easy to figure out if a large number has factors (i.e., that it isn’t a prime number).
2. It can be very, very hard to figure out what those factors are.
Now, most regular people would expect that these two ideas would be equally hard to figure
out: After all, it seems like there’s no way to know whether factors exist without actually
finding those factors. But as it turns out, mathematicians came up with some strange
algorithms that can solve problem #1 without needing to solve problem #2 (one popular
algorithm is called the Miller-Rabin primality test).
So why does this little asymmetry matter? Actually, almost every modern technology you can
think of was invented by some clever person who noticed a seemingly inconsequential
asymmetry:
• Antibiotics exploit tiny asymmetries in bacterial versus animal cell metabolism.

• A steam engine exploits small pressure differences between steam and water mixed with air.

• Computer chips work due to tiny differences between two impure variants of silicon, called p-
type and n-type silicon.

Heck, cosmologists tell us that the only reason our galaxy exists at all is due to tiny asymmetries
in the amount of matter and antimatter that were created by the Big Bang, leaving a surplus of
matter that went on to create everything we see!
Anyway, some smart guys in the 1970s looked at this asymmetry in number factoring and
noticed that if they multiplied two large prime numbers (which are very easy to find, given #1),
it was virtually impossible to figure out what the original numbers were (because of #2)!
Most modern cryptography is based on this little fact: It turns out that using such prime
numbers, you can create a private/public cryptographic key pair (we cover this cryptography in
detail in Chapter 7), which is exactly what private and public Bitcoin addresses are!
Why does this matter? Well, it turns out that if you have such a pair of keys, you can do a
couple of almost magical tasks with them:
1. If a person has a public key, they can create a message that only the owner of the private key
can read. (This is called public key encryption.)
2. If a person has the private key, they can create a message that cannot be forged, because
any person can use the public key to verify the authenticity of this message. (This is called a
digital signature.)
In our example, Satoshi signed a message with his private key in this way while promising 1
bitcoin to Crowley.
As you saw, this is Satoshi’s public key:
17QGqFshx9NfXh5TrfMkn1m34bWr2hL1AY

Here is the message promising the bitcoin to go to Crowley’s Bitcoin address:
I, Satoshi, hereby send 1 bitcoin to Crowley’s Bitcoin account
at address
1LdZhahiV6vmypkRHFZCeLvAoSgPxe7RPj.

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07

Here is the signature, created with the fancy-pants cryptography we’ve been discussing:
HoiD8JtaV271iZGDP1znkUFxzZRvVXdFFHthGaTg50Or
EpFvy8OW3kqOwHyiUmbOVNiZSeieL8ZyhmXl2/GBR0E=

At this point, you should be asking one very important question: Can we actually prove that this
is a valid, signed message? Why yes, we can do so very easily! Just follow these steps:
1. Go to http://brainwallet.org/#verify (or one of many other sites like it).
2. Enter the message and the signature.
3. Click Verify Message.
4. You can now see that the message was signed by Satoshi, the owner of Bitcoin address
17QGqFshx9NfXh5TrfMkn1m34bWr2hL1AY!

http://brainwallet.org/#verify

6
WHY BITCOIN IS A BIG DEAL

There is no question that Bitcoin is a novel technology, and certainly the idea of a universal
stateless currency is audacious. However, many doubt that Bitcoin will make a lasting impact on
the world’s economies. Indeed, you may be wondering: Is Bitcoin a world-altering technology
or merely a technological gimmick? In this chapter, we’ll discuss both sides of this question.
Because reviewing the past is often the first step in understanding the future, let’s start by
briefly delving into the history of Bitcoin and digital currencies in general.
The root problem with conventional currency is all the trust that’s required to make it work.
The central bank must be trusted not to debase the currency, but the history of fiat currencies
is full of breaches of that trust. Banks must be trusted to hold our money and transfer it
electronically, but they lend it out in waves of credit bubbles with barely a fraction in reserve.
We have to trust them with our privacy, trust them not to let identity thieves drain our
accounts.
—Satoshi Nakamoto, first post on the P2Pfoundation forum about Bitcoin, February 11, 2009
I think that the Internet is going to be one of the major forces for reducing the role of
government. The one thing that’s missing, but that will soon be developed, is a reliable e-cash.
A method whereby, on the Internet, you can transfer funds from A to B, without A knowing B or
B knowing A.
—Milton Friedman, American economist and Nobel laureate, 1999 interview conducted by the
National Taxpayers Union Foundation
Are you kidding?! In the future, when people look back at the early days of Bitcoin, they’ll say,
“It was so obvious that the ability to move money anywhere, instantly, at near-zero cost would
be a huge success.” Bitcoin is to money what the Internet was to communication.
—Adam Draper, founder and CEO of Boost, Curt Hopkins’s “Venture Capitalists Take a Chance
on the ‘Bitcoin Revolution,’” The Daily Dot, March 19, 2013
Stay away. Bitcoin is a mirage. It’s a method of transmitting money. [...] A check is a way of
transmitting money, too. Are checks worth a whole lot of money just because they can transmit
money? Are money orders? [...] The idea that it has some huge intrinsic value is just a joke in
my view.
—Warren Buffett, chair and CEO of Berkshire Hathaway, CNBC’s Squawk Box, March 14, 2014
A Brief History of Digital Currencies
The birth of the Internet led many, including economist Milton Friedman, to assume that the
invention of some sort of digital money would soon follow. Arguments in favor of digital money
were numerous. One obvious benefit realized early on was that it might help prevent
counterfeiting:
The advent of high-quality color copiers threatens the security of paper money. The demands
of guarding it make paper money expensive. The hassles of handling it (such as vending
machines) make paper money undesirable. The use of credit cards and ATM cards is becoming
increasingly popular, but those systems lack adequate privacy or security against fraud,
resulting in a demand for efficient electronic-money systems to prevent fraud and also to
protect user privacy.
—Jörg Kienzle and Adrian Perrig in “Digital Money: A divine gift or Satan’s malicious tool?”
(1996)1
However, the creation of a secure digital money system must overcome many obstacles that
might not be readily apparent. For example, anything stored in digital form can be copied and
duplicated infinitely—so how can you prevent users from duplicating their money? Also, the
money must be stored in a secure form that can’t be easily stolen or tampered with but can be
backed up in the event of hardware failure.
Initially, these and other obstacles were tackled by people like David Chaum, one of the early
pioneers of digital money. Chaum studied problems in cryptography while completing his PhD
at the University of California, Berkeley, and was particularly interested in ways people could
transfer money digitally and anonymously. He went on to create DigiCash in 1992, a company
whose mission was to establish a digital, anonymous cash system (called e-cash). The system

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote19

used a concept called blind signatures to guarantee the anonymity of its users, but a central
company or bank was needed to ensure that each unit of ecash wasn’t spent twice. Chaum’s
was not the only digital money company. By the mid-1990s, several private companies were
developing electronic cash systems, mainly hoping to facilitate online purchases in the then
nascent Internet. In addition to DigiCash, others—including First Virtual Holdings, Cybercash,
and even a division of Microsoft—were significantly invested in developing digital money
solutions. At the time, the use of credit cards to make payments via the Internet was rare, and
these efforts were seen as critical to enabling e-commerce.
But almost all attempts to create digital money had the same Achilles’ heel: A trusted
middleman was needed to keep track of everyone’s transactions. Unfortunately, many
companies like DigiCash had much difficulty garnering that kind of trust from consumers and
banks (whose cooperation they also needed). The reluctance was understandable: If a company
operating a digital money system collapsed due to a catastrophic event, the value of the
currency units could vanish overnight.
Obviously, it’s precarious for an entire currency to have a fragile single point of failure. Even the
perception of such a point of failure can ruin its prospects as a meaningful currency. In the
1990s, the existential threat to digital currency companies was that a government agency might
force them to close. Digital currencies were such recent inventions that the regulations to
manage them were absent or ambiguous. Consequently, digital currency companies did not
have a good idea of what the government would or would not consider acceptable.
DigiCash was challenged by many obstacles when it tried to meet various national regulatory
requirements. In particular, regulators would not allow the e-cash anonymity feature to
remain; mechanisms needed to be built in to allow law enforcement to trace the movement of
money to prevent money laundering, which undermined one of the primary advantages of e-
cash. These impediments, combined with slow adoption, forced DigiCash to declare bankruptcy
in 1998. Other companies faced even worse fates. Gold & Silver Reserve Inc., which maintained
a gold-backed digital currency called e-gold, was shut down. Its proprietors were indicted by
the US Department of Justice for violating money-laundering regulations.
Ultimately, the regulatory burdens and lack of consumer demand for digital money led
companies to abandon the concept. By the late 1990s, Visa and MasterCard had worked out
the technical details of secure online credit card payments. With their already large market
share, credit cards became the preferred method for consumers to make online purchases.
Hence, many of the posited benefits of a stand-alone digital currency were never realized.
For a decade after the fall of DigiCash, it seemed clear that the idea of a purely digital currency
was untenable due to the need for a trusted central party, which in turn was prone to failure
(whether due to financial or legal problems).
The Dawn of Bitcoin
In 2008, a design was finally released for a practical digital currency that did not rely on the
brittle dependency of a centralized third party: Satoshi published his white paper on Bitcoin.
The key factor distinguishing Bitcoin from its predecessors was that Bitcoin was not a company
(or a product of a company) but merely a set of rules, a protocol, that dictated how digital
transactions should be handled by a network of computers. Anybody could read the rules and
follow them, but no individual could “own” or change them.2 Because Bitcoin had no central
point of failure, it didn’t need a government’s permission to exist: There was no Bitcoin
company to shut down or central organizer to incarcerate. Essentially, the Bitcoin protocol was
just the clever use of mathematics to transmit value between people.
In the 1990s, many digital cash companies were playing a game of legalistic chess with
governments, trying to make moves to carve out a legal niche for their products without
running afoul of anti–money laundering laws. However, without exception, they all lost at this
game. For good or ill, Bitcoin “solved” this problem by simply upending the chessboard: In a
system without a central mediator, it wasn’t possible to charge a specific person with money
laundering.
Additionally, with Bitcoin, no single party could simply decide to shut down the system. As long
as there was one person in the world who continued to run Bitcoin-mining software, the whole
system would keep running. This represented a clear break from past digital currencies, and so
a buzz surrounding the technology began building as soon as the first Bitcoin client became
available in 2009.

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote20

Given the past history of money-laundering charges against digital currency providers, it is
perhaps not surprising that Satoshi decided to remain anonymous. Even though he had no
control over the operation of the Bitcoin network by design, a risk would always be present that
someone could charge him (falsely) with “operating Bitcoin.” Cleverly, he sidestepped this risk
by declining to reveal his identity.
Bitcoin’s First Four Years
Written under the pseudonym Satoshi Nakamoto and distributed on a cryptography mailing list
in October 2008, a paper titled “Bitcoin: A peer-to-peer electronic cash system” was the first
public mention of Bitcoin. This eight-page document outlined the basic design of Bitcoin but did
not delve into any of the implementation details. In online discussions that followed, Satoshi
claimed that he3 had been working on Bitcoin’s design since 2007. Shortly after publishing the
paper, Satoshi released the first version of a program that implemented the idea, dubbed
Bitcoin-Qt 0.1, and invited others to download and try running it. The first block in the
blockchain, often referred to as the genesis block, was added by Satoshi on January 3, 2009.
When he added the block to the blockchain, he inserted a short message, which all miners can
do. In the genesis block, Satoshi wrote, “The Times 03/Jan/2009 Chancellor on brink of second
bailout for banks.” This was the January 3, 2009, headline on the front page of The Times, a
British newspaper. By including this message in the genesis block, Satoshi proved that he
couldn’t have added it to the blockchain before that date. Some think that the message choice
also revealed a bit about Satoshi’s motivations for creating Bitcoin.
Because the code was open source, anyone could download, review, or modify it. Soon a small
band of volunteers joined Satoshi in contributing new features and fixing bugs (however, the
fundamental design never changed). Many cryptographers and programmers began to
participate in Bitcoin’s development, including notable computer scientists like Hal Finney, who
were longtime contributors to digital currency research (among other topics).4 Although
Satoshi communicated frequently via forum posts and emails with early Bitcoin users and
developers, he never revealed personal details about himself. One of the main contributors,
Gavin Andresen, earned Satoshi’s trust over time and gradually took control as the unofficial
lead developer of the Bitcoin project. On December 12, 2010, Satoshi posted a comment about
the latest update to the Bitcoin software (now v0.3.19):
There’s more work to do on DoS [denial of service], but I’m doing a quick build of what I have so
far in case it’s needed, before venturing into more complex ideas.
He was never heard from again.5 To this day, nobody knows Satoshi’s true identity, although
countless people have published theories on who he might be, often naming either notable
cryptographers or brilliant reclusive mathematicians. Not surprisingly, everyone who has been
fingered as the inventor of Bitcoin has denied it.
In Bitcoin’s first year, anyone could generate several hundred bitcoins a day by mining on an
ordinary laptop computer. At that time, however, it wasn’t obvious that bitcoins had any value.
Even some of the early enthusiasts who appreciated Bitcoin as an important intellectual
achievement didn’t believe their bitcoins were worth keeping after being mined. Many deleted
their wallets when they were done playing with the software. From 2009 to early 2010, it was
not meaningful to speak of the “price” of a bit-coin. Nobody had traded anything of value for
one (at least publicly), so Bitcoin remained a mere mathematical parlor trick.
But in early 2010, small-scale currency exchanges opened, and bitcoins began trading for less
than a penny each. An important moment occurred on May 18, 2010, when a forum user,
laszlo, offered to send 10,000 bitcoins to anyone who would order two large pizzas for him (see
Figure 6-1). This is considered the first recorded exchange of goods for bitcoins. At the time,
many felt that laszlo was getting the better end of the deal. But when bitcoins reached parity
with the US dollar on February 9, 2011, the joke was on laszlo; he had spent what had become
$10,000 worth of bitcoins on some pizzas.
Bitcoins continued to increase in value, and on April 3, 2013, a Porsche in Texas was sold for
300 bitcoins at the rate of about $130 per bitcoin. Less than a year later, another sports car, the
2014 Lamborghini Gallardo valued at a little over $200,000, was purchased for 216 bitcoins,
corresponding to about $925 per bitcoin (Figure 6-1).
By the end of 2013, more than a hundred million dollar’s worth of goods had been exchanged.
Thousands of small merchants and a dozen or so major retailers and online businesses had
begun accepting bitcoins as payment. The bitcoin exchange rate that year went as high as

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote21
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote22
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote23
ch06fig1
ch06fig1
ch06fig1
ch06fig1

$1,000 per BTC, which was a 500,000-fold increase from when the pizzas were purchased in
mid-2010. Major Bitcoin currency exchanges were seeing trading volumes of $500 million per
month.
Although these Bitcoin adoption numbers were remarkable in their own right, Bitcoin also
impacted the world at large in less quantifiable ways. Let’s explore the influence Bitcoin has
had next.

Figure 6-1: Photographs of the pizzas purchased by laszlo for 10,000 bitcoins in May 2010 (left)
and the 2014 Lamborghini Gallardo purchased for 216 bitcoins in December 2013
Bitcoin’s Early Impact
Although Bitcoin is still a very new technology, we can already point to several notable
achievements, not only in computer science but also in economics and politics.
It Is the Largest Distributed Computing Project in History
Less than three years after its inception, Bitcoin had already eclipsed famous distributed
computing projects, such as SETI@home, in terms of total computing power.6 Two years later,
that computing power had further grown by a thousand times. By April 2014, if you combined
the strength of the world’s top 500 supercomputers, the result would be a computer less than
0.05 percent as powerful as the Bitcoin network. This incredible growth, particularly in recent
years, was made possible by the large-scale manufacturing of special-purpose computer chips
designed solely for Bitcoin mining. In addition to the enormous increases in computing power,
the very existence of factories producing hundreds of thousands of single-purpose Bitcoin-
mining computer chips has been remarkable. (We’ll discuss the potential negative
environmental impact of Bitcoin mining later in this chapter.)
It Is a Massive Economic Experiment with Already Surprising Results
Prior to 2009, most people would have reasonably assumed that computergenerated tokens,
which anyone could create with free software, could never have meaningful value. This
assumption turned out to be dramatically false. Bitcoin’s value grew by 1,000 percent each year
for five consecutive years (from less than a penny each in 2009 to over $1,000 by the end of
2013). Within five years, the total value of all bitcoins in circulation was greater than the money
supply of the national currencies of more than 100 countries.7 The low fees and higher security
associated with Bitcoin, compared to credit card–based payment systems, gave merchants
good reasons to accept it. As of September 2014, at least 40,000 online retailers were accepting
Bitcoin,8 as well as over 5,400 brick-and-mortar stores.9
Although the long-term viability of Bitcoin as an economic tool is still in question, the fact that it
has attained value at all has challenged many people’s notions about the nature of money. Not
surprisingly, economists have been paying attention to Bitcoin, and research is being published
analyzing the economics of Bitcoin. More than 2,100 scholarly articles on the economics of
Bitcoin had been written as of September 2014.10

It Has Prompted Serious Discussions Within Governments About the Role of
Digital Currencies
Although some companies had dabbled in the issuance of digital currencies to their customers
prior to Bitcoin (sometimes even currencies that exist only in a computer game), these actions
didn’t attract the attention of governments or large financial institutions, except for some law
enforcement actions. Bitcoin, on the other hand, has stirred heated debates among politicians,

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote24
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote25
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote26
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote27
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote28

regulators, and bankers. Several US Senate hearings have been dedicated to discussing the
subject. Central banks in dozens of countries have issued statements or reports specifically in
regard to Bitcoin, and so have major banks and financial institutions. In November 2013, for
instance, the United States held congressional hearings on the regulation and the future of
Bitcoin, and these received widespread publicity.
Bitcoin has drawn society’s attention to the potential promises and perils of digital currencies in
a largely digital world. Even if Bitcoin disappears, its creation has already influenced future
legislation and policies toward digital currencies.
The Future Potential of Bitcoin
A quote that has been attributed at various times to several people, including Niels Bohr and
Yogi Berra, is the maxim “Prediction is very difficult, especially about the future.” Nonetheless,
in a book about Bitcoin, we would be remiss if we didn’t explore its potential in the future.
First, we’ll look at the existential risks for Bitcoin—situations that could cause bitcoins to
become worthless. Second, we’ll look at the two main roles that Bitcoin could play in a future
world, either as a method of storing value or as a method of exchange. Third, we’ll consider
some quantitative assessments of a successful future economy built around Bitcoin.
What Are the Existential Risks to Bitcoin?
For Bitcoin to survive long term, it must have advantages over existing currencies, or its
adoption rate will stall. Also, because it is a software technology, Bitcoin needs to instill
confidence that its network cannot be destroyed by computer bugs or hacks. Additionally,
Bitcoin won’t survive if it can be extinguished by outside entities, such as governments or
corporations. Finally, it won’t survive if it is somehow replaced by another, possibly better form
of money (perhaps another cryptocurrency). Let’s look at each of these existential risks to
Bitcoin in succession.
Does Bitcoin Have Advantages over Existing Currencies?
Many have argued that Bitcoin is just a fad, and after the fad is over, people will realize that
Bitcoin has no advantages over paper money. As Paul Krugman has asserted in regard to
Bitcoin, “So do we need a new form of money? . . . We have huge economic problems, but
green pieces of paper are doing fine—and we should let them alone.”11
However, a strong case can be made that Bitcoin does have significant advantages over
traditional currency. An ideal currency has certain properties that make it as useful as possible.
Those properties include portability, divisibility, durability, scarcity, and fungibility. Let’s look at
each property in turn:
• Portability: In a perfect world, money should be light, compact, and easily transported. By
this measure, bitcoins easily trounce paper currency: Bitcoins weigh nothing, are stored
effortlessly even in large quantities, and can be moved across the world within minutes. Of
course, as part of a world financial system, electronic mechanisms are available for storing and
transporting traditional currencies in digital form, improving the portability of those currencies
as well. However, in terms of simplicity, cost, and speed of portability, Bitcoin has clear
advantages at this time.
• Divisibility: Everyone knows the frustration of needing to pay someone a small dollar
amount but only having a large bill and no change. This problem cannot exist with bitcoins since
bitcoins are completely divisible to fractions of a penny. Because computers are efficient at
crunching numbers, it’s no surprise that they can handle the task of dividing Bitcoin amounts in
any way necessary to make change.
• Durability: By design, every bitcoin is stored within the Bitcoin block-chain, a computer file
that is stored on many thousands of computers across the world. As long as a person doesn’t
lose the private key that protects their money, that person’s bitcoins are indestructible. On the
other hand, the US Federal Reserve estimates the life span of a dollar bill at 5.9 years.12
Of course, another aspect of durability is that the value of a bitcoin must be maintained into
the future. Although the value of a bitcoin in the future is unpredictable and volatile day to day,
it has generally increased from year to year. One can certainly argue, however, that durability
of Bitcoin in terms of maintaining its value is not a certainty until the network of users grows
much larger.
• Scarcity: The primary innovation of Bitcoin is the decentralized creation of scarcity for a
digital asset, which is necessary for bitcoins to retain any monetary value. Therefore, like paper

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote29
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote30

money, bitcoins can maintain a limited supply. However, with paper money you need to trust
the government (i.e., the owner of the printing presses) to maintain this scarcity over time and
hence prevent inflation.
• Fungibility: It’s important for any dollar bill—or any bitcoin—to be equally valid for
payment. If a recipient of money constantly needs to worry about whether they have received
“good money” or “bad money,” the utility of the currency is damaged. As you know, paper
money can be traced physically by tracking the serial numbers on bills or electronically through
tracing mechanisms built into our modern electronic payment system. Similarly, bitcoins are
traceable by following coins through the public blockchain. Hence, neither traditional currency
nor Bitcoin has a clear advantage in terms of fungibility.
With regard to some of the properties that determine the utility of currency, Bitcoin scores
quite favorably, especially in term of portability and scarcity. Therefore, it is unlikely that
Bitcoin will ever fail solely because it offers no advantages over traditional money.
Can Bitcoin Be Destroyed via Bugs or Hacks?
Another commonly proposed reason for which Bitcoin may be extinguished at some point is
that it might have bugs and can be hacked. Clearly, if a hacker was able to obtain an arbitrary
number of bitcoins from thin air or found a way to transfer bitcoins from other people’s wallets
at will, Bitcoin would quickly disappear into obscurity.
However, it is currently unlikely that such a bug exists. Many reputable security researchers
have studied Bitcoin and have been impressed by the quality of its code. For instance, Dan
Kaminsky, a respected security expert, wrote an article for Business Insider in April 2013 titled
“I Tried Hacking Bitcoin and I Failed.” In the article, he talks in glowing terms about Bitcoin’s
security model.
However, the most important reason to believe that the Bitcoin system is unlikely to contain
serious flaws is based on an economic argument: If anyone figured out how to hack the core
network, they could become phenomenally rich. Such a person could potentially extract billions
of dollars from the network before the value of the currency collapsed. The simple fact that no
person has done this yet, despite the enticing incentives to do so, makes a strong case against
the existence of any such flaws in the currency.
Can Bitcoin Be Destroyed by Governments or Corporations?
In the early days of the Internet, we became accustomed to the idea that we would connect to
a central server (run by Google, Amazon, Yahoo!, etc.) using a web client in order to browse
online. This model for using the Internet is commonly called a client-server architecture.
However, since those days, many new Internet-based applications have started using a peer-
to-peer architecture. In this decentralized model, a software application finds other “like-
minded” peer applications on the Internet and connects with these peers to operate the
application. Early applications that used this approach include BitTorrent (for movie
downloading) and Gnutella (for music discovery/downloading). Bitcoin also uses a peer-to-peer
network in its design.
Peer-to-peer systems have many advantages over traditional client-server systems, including
improved durability and performance. Because of these advantages, it is likely that these
systems will become increasingly ubiquitous.
One benefit of using peer-to-peer systems over traditional architectures is their
indestructibility: As long as a peer-to-peer app user can find other peers to connect to, the
network will continue to exist, and it can do so without any central point of failure. For this
reason, it is extremely unlikely that a government or other entity could ever completely
extinguish the Bitcoin network, no matter how powerful that entity is.
Of course, the government of a country could decide to declare the use of Bitcoin illegal, and
such declarations could greatly impact the value and utility of Bitcoin. However, short of
someone completely shutting down the Internet, Bitcoin will continue to exist despite any such
declarations. Also, since Bitcoin is inherently global, there is a limit to the impact the laws of a
single government can have on its value and utility. Draconian laws passed against Bitcoin in
one country may merely shift its use and development (and associated jobs!) to other
countries.
Can Bitcoin Be Supplanted by Another Cryptocurrency?
All of us had a front-row seat when Google appeared out of nowhere with its superior search
engine technology and left a long list of defunct, and now almost forgotten, search engines in

its wake. Does anyone remember the search engine powerhouses of Lycos or Altavista? Is it
possible that Bitcoin will similarly fade into obscurity when some new, better cryptocurrency
comes along?
Developers who contribute to the core Bitcoin protocol tend to be very conservative. Not only
does no developer want to take the blame for introducing a bug into a multibillion-dollar
system, but even if a more radical feature was added, the Bitcoin community would be unlikely
to accept it. Arguably, this is exactly what you want to hear if you are one of the people who
have, in aggregate, billions of dollars relying on a well-functioning Bitcoin network. It’s in
everyone’s interest to be extremely careful in making any fundamental changes to the core
Bitcoin system. Even so, this conservative approach heightens the danger that an upstart
currency could emerge, à la Google, and eat Bitcoin’s lunch.
Of course, we have no way of knowing what fantastic features a new currency would need such
that it could supplant Bitcoin. However, three main reasons exist to believe that Bitcoin may be
able survive the onslaught of newcomers: network effects, the nature of cryptocurrency
volatility, and the recent development of cryptocurrency-pegging technology.
The network effect is the simple concept that people want to use a currency only if other
people will accept it as payment. The more users a currency has, the more useful it is. This
creates a natural barrier for the adoption of new currencies (and certainly has hindered the
adoption of Bitcoin relative to traditional currencies in its first few years). Currently, Bitcoin has
the largest adoption of any cryptocurrency, so newer ones would need to have easily
distinguishable advantages over Bitcoin to overcome its network advantage. But how does
volatility factor in?
From an economics standpoint, any asset that becomes newly available to an open market
needs to first undergo a price discovery process. This was part of the reason for the Internet
bubble in 2000: People simply didn’t know the value of the stocks of eBay, Yahoo!, and other
tech companies because similar companies had not existed in the past. Eventually, as people
became more familiar with Internet-focused corporations, it became clearer how to reasonably
assign a price to each company’s stock.
Bitcoin has been undergoing a similar price discovery process, which is still in its very early
stages: The price of a bitcoin has been swinging wildly up and down since the currency’s
inception. As more and more users have started to use it, however, the volatility has modestly
decreased (i.e., the swings, in relative terms, have become less violent). If Bitcoin volatility
continues to decrease, this trend may give Bitcoin a significant advantage over future
cryptocurrencies: Because Bitcoin is guaranteed to be the oldest cryptocurrency, new
currencies might be unable to catch up in this “volatility race,” and Bitcoin will always remain
less volatile than upstarts.
If Bitcoin maintains advantages in terms of network effects and volatility, it may make sense for
new cryptocurrencies to use pegging to link themselves to the Bitcoin network instead of
trying to replace the Bitcoin network entirely. Recently, two well-known cryptocurrency
developers and entrepreneurs, Adam Back and Austin Hill, have suggested that the value of
new cryptocurrencies could be directly linked one-to-one with the value of a bitcoin by using
cryptography to allow coins to “ jump” between block-chains using clever algorithms. If this
idea succeeds, it may be possible to create cryptocurrencies with new technological
advancements into side chains of Bitcoin. Side chains are separate blockchains with different
rules that share the same pool of coins as Bitcoin, allowing the new currency to share the same
volatility (or lack thereof, potentially) and network benefits as Bitcoin proper.
If the side chain idea (or a similar peg-based idea) is successful, future cryptocurrencies would
benefit from Bitcoin’s existence and even augment it rather than replace it. For these reasons,
Bitcoin might never be entirely replaced by other cryptocurrencies. That being said, if a
cryptocurrency is created that really is so much better than Bitcoin that we all switch, that
wouldn’t really be a bad outcome, would it?
Now that we’ve discussed the existential risks, let’s explore what Bitcoin’s future might look
like.
What Role Might Bitcoin Play in the Future?
The two main uses of a currency are as a means of storing savings and as a payment
mechanism. If we want to hypothesize about the future impact of Bitcoin, we need to compare
and contrast these two roles of money and explore which role the currency can take

on—because the role that Bitcoin plays can make a big difference in terms of the value of the
Bitcoin economy, as well as the value of an individual bitcoin.
Using Bitcoin for Savings
Bitcoin potentially has much to offer as a mechanism for storing savings. The reason is that its
total supply is precisely known. Also, if used properly, it cannot be easily seized or stolen. You
might imagine that in the future, it could become a preferred vehicle for saving your wealth
instead of cash, precious metals, or real estate.
In this role, Bitcoin’s use may be most comparable to that of gold, currently the most popular
decentralized medium for storing savings. If we could estimate how much wealth is currently
saved in gold, it would indicate the scope of possibility for Bitcoin to be used in a similar way.
Can we estimate how much wealth is currently stored as gold? As this book goes to press, it is
estimated that all the gold above ground (as opposed to gold yet to be mined) is valued at
about $9 trillion. Roughly half that amount is used for jewelry, and the rest is in gold bars or
coins, which are used simply as a store of value. Let’s conservatively assume that everyone who
possesses gold jewelry does so purely for its beauty, not as a form of savings. That leaves $4.5
trillion worth of gold used purely as a means of savings.
So if bitcoins were ever widely adopted for saving wealth, the Bitcoin economy would eat into
the market share of a $4.5 trillion gold economy.
Another way to estimate the amount of money currently in savings is to look in aggregate at
how much wealth exists in the world. Today, the average net worth of a person (combining all
the billionaires with the destitute poor) is about $25,000. This value consists of savings held in
cash and wealth held in other types of assets. Hence, the total wealth currently kept in savings
worldwide is about 7 billion times that much, or approximately $175 trillion.
If Bitcoin were ever to become a popular store of value, it would represent some fraction of
that $175 trillion. Even if only 1 percent of the world’s wealth was stored in the form of
bitcoins, the total value of the Bitcoin economy would be in the multitrillion-dollar range. Since
we know that there will only ever be at most 21 million bitcoins in circulation, each bitcoin
would need to be worth hundreds of thousands of dollars in order for Bitcoin to store 1 percent
of the world’s wealth.
Using Bitcoin as a Medium of Exchange
If Bitcoin becomes primarily used as a medium of exchange (i.e., a payment mechanism),
people would keep only as many bitcoins on hand as they needed for purchases and would
keep the bulk of their savings in other places. Currently, most people use traditional currencies
this way. They spend US dollars (or euros, yen, etc.) to make purchases, but they save the
majority of their wealth in bonds, stocks, mutual funds, or other assets that don’t lose value
due to steady inflation.
Because Bitcoin transaction fees are low, the payment network is not proprietary, no identity
information is unnecessarily revealed, and the transaction security is based on modern
cryptography, Bitcoin is potentially a superior medium of exchange compared to national
currencies.
To estimate the impact Bitcoin might have if it were used widely as a payment mechanism, we
need to estimate how much money (of any type) is currently in active circulation across the
world for payment purposes. Specifically, we need answers to two key questions:
1. How many expenses does a person have to pay on a regular basis?
2. How long will it take a given bitcoin to be reused within the economy as it passes from
person to person?
To answer question 1, we can use the fact that the current median yearly income of a person in
the top-earning billion people in the world is roughly $15,000. Let’s assume that from this
income, $3,000 is put toward savings and that this person spends $1,000 a month.
To answer question 2, let’s estimate that it currently takes about a month for a dollar to be
respent. In other words, if you buy a hamburger at a restaurant today for $10, let’s assume that
it will take about a month before those same$10 are spent by the restaurant owner.
Using these assumptions, we can roughly estimate that approximately $1,200 needs to be in
circulation per person at any moment. For 1 billion people, a total of $1.2 trillion worth of
currency needs to be in circulation as a medium of exchange for the world economy to
function.
If Bitcoin became a widely adopted medium of exchange, some part of this $1.2 trillion

payment economy would be executed in bitcoins. Again, because of the hard limit of 21 million
bitcoins, we know that if bitcoins were used for just 1 percent of the world’s transactions, then
each bitcoin would need to be worth tens of thousands to hundreds of thousands of dollars.
Clearly, Bitcoin has a long way to go in terms of adoption before it reaches these staggering
numbers (if it ever does). We will always use many different assets as a form of savings (stocks
will never go away, for example, no matter how popular Bitcoin gets), and we will use many
different payment mechanisms. That being said, nothing stops Bitcoin from being used to some
degree as both a medium of exchange and a form of savings, and the more widely it is used,
the more useful and convenient it will be to its users.
In this section, we have discussed the potential value of Bitcoin under certain adoption
scenarios, but we have little basis for predicting just how much it will be adopted. Depending
on the adoption level we assume, we could forecast virtually any value of a future bitcoin, from
hundreds of dollars to millions. Somewhat ridiculously, if we assume almost all of the world’s
savings are stored in Bitcoin, we can even imagine a billion-dollar bitcoin, because the amount
of savings and assets in the world is so incredibly immense!
For this reason, it doesn’t make sense to try to assign a precise estimate to the value of bitcoins
in the future. The best we can do is suggest that Bitcoin has potential as a technology, and in
the future it could be a big deal—that is, if it doesn’t first fail in the many possible ways we’ve
considered.

UNIT OF ACCOUNT
It’s theoretically possible in the distant future that a currency like Bitcoin could be used to
denominate the prices of goods as an international standard. Using Bitcoin as a unit of account
is certainly an intriguing idea, and this purpose is commonly mentioned in economic texts as an
important role of money, but it would have negligible economic impact on the future world
economy. The reason is that using Bitcoin as a pricing standard, in itself, doesn’t directly affect
how many bitcoins or other goods are bought or sold, simply because you can “measure” items
in Bitcoin without needing to own them.
The Dangers of Decentralized Digital Money
After discussing the many potential benefits of a currency like Bitcoin, we would be remiss if we
didn’t also examine the potential dangers of this technology. Here, we’ll consider the ways that
Bitcoin might be harmful to society if it is widely adopted. Even if the technology is sound, some
ethical reasons might exist for opposing Bitcoin.
Bitcoin and Illegal Activity
Given the early and eager adoption of Bitcoin by illegal product marketplaces, such as the
infamous Silk Road website that allowed customers to buy drugs and other illegal products via
mail order, it has been argued that Bitcoin’s privacy features enable criminals. Arguably, there’s
some truth to this debate: Just as water always seeks the lowest level, criminals will always
seek tools that give them the most anonymity and protection against law enforcement.
However, in 2013, the US government successfully found and prosecuted the alleged creator of
Silk Road and arrested alleged drug dealers selling products on the site. The swiftness with
which Silk Road was dismantled seems to have been a strong deterrent for other marketplaces
trying to adopt Silk Road’s business model. For now at least, only limited evidence suggests that
Bitcoin offers criminals any meaningful protection from the law.
Additionally, arguing that technologies that promote anonymity are somehow suspect from a
purely moral perspective creates dangerous precedents. With the recent widespread use of
public cameras, facial recognition technologies, social networking sites, and GPS-enabled cars,
it is becoming more difficult for people to maintain their privacy each year. This erosion of
privacy has its own downsides, compromising personal liberties.
For this reason, a counterargument can be made that encouraging and destigmatizing the use
of privacy-enhancing technologies like Bitcoin may actually be positive for society. The idea
that it’s acceptable and normal to use tools that protect privacy is called anonymity by default.
If you agree that valid reasons exist to remain anonymous in many situations and that anyone
doing so doesn’t “have something to hide,” you will appreciate the privacy protections afforded
by the Bitcoin currency.
There is also the simpler argument that Bitcoin is merely a useful tool and so it has an enabling
effect to anyone who uses it, even criminals. Certainly cars, phones, computers, and the
Internet are all used by criminals to accomplish illegal activity, but we wouldn’t ban those

technologies solely to hinder criminal activity.
The Energy Costs of Bitcoin
Another ethically contentious facet of Bitcoin is that miners expend enormous amounts of
energy when mining for bitcoins. These energy costs are significant, and some people have
argued that this makes Bitcoin wasteful and harmful to the environment.
However, this argument does not take into account the massive costs that are expended by our
existing financial system for security. Every armored van, security officer, and bank vault that is
used to protect traditional currency uses resources, and if we moved to a currency that
leverages modern cryptography for security, many of these traditional security mechanisms
that physically deter thieves from accessing this money may in theory no longer be necessary.
Additionally, credit card issuers charge high fees (upward of 2 percent per transaction in the
United States), and a large chunk of these fees are used for fraud-prevention purposes. If we
widely adopted Bitcoin, that would greatly reduce such fraud, so this 2 percent resource drain
on the entire credit card economy would be decreased.
The bottom line is that the energy cost of Bitcoin mining is a necessary component of the
Bitcoin currency system, and it serves a real and useful function. Naturally, if a person starts a
priori with the assumption that Bitcoin is not useful, no argument will suffice to convince such a
person that the energy expended to protect the Bitcoin network is anything but a waste.
However, in this book we’ve described many benefits of Bitcoin that provide some justification
for its use of energy.

PROOF-OF-STAKE: A LESS WASTEFUL WAYTO SECURE A CRYPTOCURRENCY?
Bitcoin mining uses a concept called proof-of-work to secure the system. In this system, new
blocks (and bitcoins) are awarded randomly to miners based proportionally to the number of
hashing calculations they perform. However, some developers have attempted to build
cryptocurrencies that adopt a different concept called proof-of-stake, which awards blocks in a
manner proportional to the amount of currency a miner holds (or proportional to a similar
metric, such as the number of coins owned multiplied by the days the coins have remained
unspent). Two currencies that use this approach are Peercoin* and NXT.**
A proof-of-stake mining reward doesn’t require the same considerable energy expenditure
required by a proof-of-work currency, like Bitcoin. However, it isn’t clear whether proof-of-
stake-based currencies are as secure as proof-of-work-based ones. Just as proof-of-work-based
systems are “vulnerable” to a 51 percent attack, proof-of-stake-based systems have their own
vulnerabilities (51 percent attacks are described in detail in Chapter 8). Although we know that
a 51 percent attack in a proof-of-work-based system requires extraordinary resources and is
economically irrational for the attacker, attacks on proof-of-stake-based systems may be easier
than on proof-of-work-based system. Peercoin mitigates this issue by combining proof-of-stake
with some additional proof-of-work to maintain stronger security. NXT addresses this issue by
adding nuances to the consensus mechanism to decide which blocks are valid, potentially
sacrificing some decentralization in the process.
The bottom line is that no consensus yet exists among cryptocurrency experts as to the
practicality of proof-of-stake. Even so, it is an interesting concept with the attractive benefit of
dramatically reducing the energy requirements for operating cryptocurrency.
* http://www.peercoin.net/
** http://www.nxtcommunity.org/
Bitcoin and the Dangers of Deflation
Another common criticism that is leveled against Bitcoin is that, since the total number of
bitcoins is capped at 21 million, their value will continually increase and nobody will actually
want to spend them, making the currency useless (or worse, leading to dangerous deflation).
This argument relates to the economic concept of Keynesian economics,13 which maintains,
among other ideas, that frequent injection of new currency into the economy helps promote its
growth. Regarding Bitcoin, Keynesians will argue that the inability of governments to print more
currency units would seriously damage economic growth.14 They contend that the scarcity
enforced by Bitcoin’s cap would drive nominal deflation, which is when the price of everyday
goods denominated in bitcoins would drop over time, causing the circulation of the currency to
freeze up and forcing the economy into a depression. The rationale is that individuals would
postpone their purchases in anticipation of lower prices for goods in the future.
Bitcoin supporters counter the Keynesian arguments with ideas based in the philosophy of

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08
http://www.peercoin.net/
http://www.nxtcommunity.org/
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote33
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote34

Austrian economics. This economic philosophy argues, among other ideas, that the price of a
unit of currency has the ability to adjust appropriately on its own, guaranteeing that purchases
and savings in an economy will remain at desirable levels, no matter how many units of
currency exist at any point in time in the economy.
Bitcoin and Government Stability
Some contend that a successful Bitcoin system would be harmful because it could destabilize
governments. It has been debated that Bitcoin is part of a larger movement, recently termed
radical decentralization, which maintains that all decentralization (including the functions of the
government) is desirable and possible. This idea is a direct extension of the philosophies of
Friedrich Hayek, who reasoned that local control is usually preferable to central control,
because local people have more knowledge about local conditions and can therefore behave
more efficiently in most situations. However, it is true that governments benefit from having
control over their currency supply. Governments encounter challenges when they attempt to
raise funds via direct taxation, and printing money to fund government projects is known as
“taxing by inflation,” which is both easier for governments to do and harder for citizens to stop.
The loss of this means of raising money for government projects (including military defense)
could reduce the financial viability of some governments.
However, Bitcoin is not the only recent technology that is decentralized by design: BitTorrent,
Gnutella, Tor, and Freenet are similarly immune to central control. Clearly, computers allow us
to explore the idea of decentralization, and its merits and potential faults, in ways that were
not possible before the Internet revolution. Many of these decentralized systems were thought
to pose risks to government stability (especially the Internet in countries with oppressive laws
against free speech), but we accepted them anyway due to the enormous benefits they
brought to society. The loss of control by governments, in the case of the Internet, was
compensated (and then some) by increased economic productivity. Computer engineers are
continually pushing the boundaries of what’s possible with decentralized networks, trying to
drive financial contracts (such as software projects like Ethereum15) or communication systems
(such as Bitmessage16) toward decentralized systems as well. Only time will tell what kind of
impact these systems will have on governments, good or ill.
In the next chapter, we’ll explore some of the underlying technology in Bitcoin in more detail,
starting with Bitcoin cryptography.

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote35
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote36

7
The Cryptography Behind Bitcoin

Bitcoin relies on cryptography to function, which is why it is sometimes called a
cryptocurrency.1 But what role does cryptography play in Bitcoin, and why is it needed? We’ll
begin with a short introduction to some necessary cryptography concepts (if they are familiar to
you, you can just skip to “The Reasons Bitcoin Needs Cryptography” on page 137), and then
we’ll explore the specific cryptographic methods used in Bitcoin.
If you flipped to this chapter only because you wanted to know whether the cryptography used
by Bitcoin is safe, you can rest easy knowing that Bitcoin uses only tried-and-tested
cryptographic techniques: All of the cryptographic methods used by Bitcoin have been widely
used in the past by governments and major corporations to secure financial, medical, and other
sensitive information, as well as personal identification data.
In fact, the cryptography in Bitcoin could be described as boring, simply because it relies on
very conservative cryptographic algorithms. But in some fields of study, such as accounting and
dentistry, boring is good; in the case of Bitcoin, conservative and well-established cryptography
helps make it more secure. The interesting part is what Bitcoin does with cryptography.

Fortunately, as you’ll see, although Bitcoin cryptography may be old hat to the experts, it is still
immensely fascinating to a novice!
A Brief Cryptography Overview
Historically, cryptography was used to send secret messages when necessary to protect
information. Messages were systematically scrambled, or encrypted, in a way that hopefully
only the recipient of the message knew how to decrypt. A well-encrypted message might be
intelligible as battle plans to the intended recipient, but to anyone else it would just be a well-
tossed word salad with a side order of alphabet soup. Historically, encryption and decryption
were laborious tasks and were reserved only for secure clandestine communication (usually of
a military or illicit romantic nature). With the advent of computers, which could do in
milliseconds what used to take hours manually, cryptography is now used routinely by the
masses to encrypt/decrypt very important (e.g., financial) and not-so-important (e.g., pay-per-
view TV) communication. Perhaps surprisingly, the convenience and speed of computers has
led to the adoption of cryptographic methods for more than just encrypting secret messages.
Common examples include logging in to websites with a username and password combination
and using a registration key to install software. Both use cryptographic methods, but no
message encryption is involved in either case.
In addition to encrypting messages, modern cryptography is used to verify the validity of
information (through cryptographic hash functions) and to prove one’s identity (through
digital signatures). For example, without modern cryptography, you wouldn’t be able to

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote41
page_137
page_137

distinguish between two identical websites that both claimed to belong to your bank. One
might be phony and run by thieves to steal your money. But only your bank’s website can
provide the correct digital signature. Before we explain how digital signatures and
cryptographic hash functions work, let’s explore one-way functions, a feature that both rely on.
One-Way Functions
One-way functions are mathematical functions that make it easy to calculate an output based
on the input but difficult to do the reverse. A precise mathematical definition of what is easy or
difficult doesn’t exist but depends on the complexity of the calculation and the effort required
to solve it.
A typical example is called integer factorization, which asks you to write an integer2 as the
product of only prime numbers—for example, the factors of 6 are 2 and 3, which are both
prime. Given the prime factors as input, it is easy to multiply them to produce an output
integer, but the reverse is not true (at least for larger numbers). Given a large integer, finding
its prime factors is very difficult. The only known methods involve systematically guessing
different combinations of prime factors, but the amount of time required to find the right
answer increases exponentially with the number of digits. Imagine trying to multiply 2 × 7 × 7 in
your head. It is not that difficult to calculate the answer of 98; however, if you were given the
number 98 and were required to find its prime factors, generating 2, 2, and 7 would be more
difficult. A typical laptop can factor a 60–80 digit number in less than a second, but the required
time grows exponentially: To factor a 300-digit number or greater would take a modern
supercomputer decades.
Prime factors (2,7,7,13) → 2x7x7x13 → Output integer 1274
(easy)
Output integer 1274 → ??????????? → Prime factors
(2,7,7,13) (hard)

Another one-way function, which is a bit more complicated but is commonly used in
cryptography, involves the discrete logarithm. Consider a set of integers {0, 1, 2, 3, ..., n − 1}
where n is a prime number and where we only use modular arithmetic with modulo n:3
Example: n = 7 3 + 6 (mod 7) = 2 3 x 6 (mod 7) = 4

It is easy (as in, you can do it with a pocket calculator) to raise an integer, a, to the kth power
to calculate the integer b:
Example: a^k (mod n) = b 3^2 (mod 5) = 4

However, the discrete logarithm, which is finding k given only a, b, and n, is difficult to
calculate. The only known methods to find k are variations on trying to guess every value
between 0 and n that satisfy the preceding equation. The larger the value of n, the harder it is
(and the more time it will take) to calculate k.
Example:
a = 4; k = 4781; n = 17627 → 4^(4781) (mod 17627) = 2685 →
b = 2685 (easy)
a = 4; b = 2685; n = 17627 → ????? →
k = 4781 (hard)

In the early days of computers, people started applying the asymmetry in these one-way
functions to build various classes of cryptographic algorithms, which is what we’ll discuss next.
Cryptographic Hash Functions Verify Information
Cryptographic hash functions are one-way functions designed to take arbitrary data as input
(e.g., a number, a short message, an image, or the collected works of Shakespeare) and
generate fixed-length output (e.g., a 128-bit or 256-bit number). The output is called a hash or
hash value. Hash values can act like a fingerprint—a unique identifier—for files or texts.
They’re designed in a way that makes it extremely unlikely that any two non-identical inputs
would output the same hash value (when this does happen, it is called a collision). In particular,
even a small change to the input data, such as changing one letter in the entire collected works

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote42
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote43

of Shakespeare, would result in a new hash value that is completely unrelated to the original
hash.
A commonly used cryptographic hash function is MD5 (message digest algorithm, iteration
five), which takes any data as input and outputs a 128-bit hash value, like this:
MD5("hello world") = 5eb63bbbe01eeed093cb22bb8f5acdc3

As you can see, changing just one character in mysecretpasswordisCATS results in a completely
different hash output:
MD5("mysecretpasswordisCATS") = 399257907fd42e2ee3fcb39b04192b04
MD5("mysecretpasswordisBATS") = b12d76c8b8c063616dbf7b8b7349aed0

This property enables hash functions to be used to verify that certain information is correct or
to match what someone else claims is correct, without needing to scrutinize the actual
information. For example, MD5 is used to check whether a downloaded file is safe to use and is
free of errors that might have occurred during data transmission. If the MD5 hash value of the
downloaded data matches the hash value provided by a reputable source, you can be certain
that data does not contain any hidden viruses and was not corrupted during the file transfer.
The slightest alteration to the file would cause a noticeable change to the hash output. A hash
is like a tamperproof seal: If it’s broken, don’t buy the product.
Another, more exciting, use of cryptographic hash functions is proving that you know a secret
password without giving it away. Imagine you are a spy behind enemy lines. After many days of
traveling under the cloak of darkness, you finally reach a guarded warehouse to meet with
fellow agents. A guard at the front door asks you for the secret code, but you aren’t sure
whether the guard is on your side. You need to prove that you know the code without risking
the mission by letting your secret code fall into the wrong hands! What do you do? You give
him a hash of the secret code. If he knows the code, he can calculate the hash and verify that
you also know it. If he doesn’t and isn’t supposed to know the code, you haven’t revealed it.
This dramatic example describes current standard procedure whenever you create a new
account with a username and password for a website. The password is never stored on the
website’s servers; instead, the hash of the password is stored, and the server checks whether
the hash of what you typed matches what is on record. As a result, if the server is ever stolen or
hacked into, no passwords will be revealed.
Public Key Cryptography
The invention of public key cryptography in the 1970s was a significant breakthrough, allowing
for much of the technology we take for granted today. Until then, all methods of encryption
required the sender and receiver to know the same secret encryption key to encrypt and
decrypt the message (also known as symmetric key cryptography). However, this method
presented a problem because it assumed that, at some earlier time, the sender and receiver
had a safe way of communicating to decide on an encryption key without the fear of anyone
eavesdropping.
In public key cryptography (also known as asymmetric key cryptography), two different keys
are created: a public key that is shared to encrypt the message and a private key that is
confidential to decrypt the message (yes, the same private key that is used to spend bitcoins).
With asymmetric key cryptography, communicating securely with anyone using an unsafe
channel, like the radio or Internet, is easy: You share your public key with others who want to
communicate with you, and then anyone can send you encrypted messages that only you can
read using your private key. Because the public key cannot be used to decrypt messages, no
danger occurs if it falls into the wrong hands. If others want you to send them encrypted
messages, they give you their public key, and so on.
How does asymmetric key cryptography work? The original method, called RSA encryption
after its developers—Ron Rivest, Adi Shamir, and Leonard Adleman, is based on integer
factorization.4 Let’s imagine that Crowley wants to communicate with others using the RSA
method. Crowley first needs to create a public and a private key (see Table 7-1). He can do this
at any time before he starts his communications.
Table 7-1: Sending an Encrypted Message Using the RSA Method
Ste Instruction Example

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote44
ch07table1
ch07table1

p
1 Crowley chooses two prime numbers, p and q, and multiplies

them to get the prime product n. Recall that this is a one-way
function; there is no easy way to obtain p and q given only n.

p = 71, q = 149
n = 71 × 149 = 10579

2 Crowley calculates t = (p − 1)(q − 1). t = (71 − 1) × (149 −
1)
= 10360

3 Crowley chooses an integer e such that e and t do not share
a common denominator (other than 1 of course). He has many
possible values of e from which to choose. This is Crowley’s
public key.

Choose e = 3453

4 Crowley finds d such that d × e (mod t) = 1.
This is Crowley’s private key.

d × 3453 (mod
10360) = 1 satisfied
when d = 10357

Once the public and private keys are generated, Crowley can distribute the public key widely
(along with the prime product, n). Then anyone can use this key to encrypt a message meant
only for Crowley.
Of course, to encrypt and decrypt messages, you need some way of converting text into a
mathematical form, which is called encoding. Converting a number back to text is called
decoding. Encoding and decoding should not be confused with encrypting or decrypting
because you are not scrambling the information. Many different encoding schemes exist, and it
doesn’t matter which one you use, but all parties involved need to use the same one.
Let’s assume that the letter a becomes a 0, the letter b becomes a 1, the letter c becomes a
2, and so on through the alphabet. In Table 7-2 we’ve encoded the message “fade” using this
technique.
Table 7-2: Encoding the Word “Fade” Using a Simple Scheme
Letter Position in alphabet starting with zero
F 5
A 0
D 3
E 4

Now that we have an encoded message we want to send to Crowley, as well as Crowley’s public
key, we can encrypt his message so that only Crowley can decrypt it, as shown in Table 7-3.
Table 7-3: Encrypting the Word “Fade” Using Crowley’s Public Key
Ste
p

Instruction Example

1 To encrypt a message, use the public key, e, to
calculate:
c = me (mod n)
c is referred to as the ciphertext

c = 5034^3453 (mod 10579)
= 5272
decoded as fchc

2 To decrypt a message, use the private key, d, to
calculate
m = cd (mod n)
m is the original message

m = 5272^10357 (mod 10579)
= 5034
decoded as fade

Almost an identical scheme can be used to prove one’s identity, using what is referred to as a
digital signature.
Digital Signatures
In the public key encryption scheme described earlier, anyone can send you encrypted
messages without you knowing who they are. Consider Crowley on his island trying to arrange a
transfer of pineapples with Satoshi on another island. If Crowley receives two messages with
contradictory information both claiming to come from Satoshi (for example, “Send pineapples
to the north island. —Your friend, Satoshi” and “Send pineapples to the south island. —Your

ch07table2
ch07table2
ch07table3
ch07table3

friend, Satoshi”), how does Crowley know which message really came from Satoshi?
Fortunately, Satoshi can use a trick to prove his identity and the authenticity of his messages:
He can encrypt messages not only with his public key but also with his private key. This
backward encryption method reverses the mathematics of encryption, just as you’d expect:
Although it’s very difficult to encrypt a message (only the person with access to the private key
can accomplish this), it’s very easy to decrypt a message (anyone with the public key can do so).
Therefore, if Satoshi uses this backward method to encrypt the message: “My name is Satoshi, I
live on the south island, and I double-pinky-swear to pay you for some pineapples,” anyone,
including Crowley, can decrypt this message using Satoshi’s public key (which, let’s assume, was
previously established to be 100 percent authentic). Crowley can then say, “I know Satoshi is
the only person on Earth who has access to his private key, and this message was written by
someone who must have access to this private key; therefore, these words are Satoshi’s
words.”
When you use this method to prove your identity, the functions of the public and private key
are reversed. Satoshi can use his private key to encrypt a message, and everyone else can
decrypt it using his public key. Because others have Satoshi’s public key, the contents of the
message wouldn’t be secret, but the fact that it was encrypted using Satoshi’s private key
proves that it could not have been sent by anyone else.
Whis Is It Called a Digital Signature?
The term digital signature is used because the most convenient way to send a reverse
encryption is to send two separate bits of information: a message and a message signature.
Think about it: Satoshi has nothing to hide in the message he is sending (in fact, he explicitly
wants everyone to be able to read his message); therefore, it is arguably more convenient for
Satoshi to send the message in an unencrypted form and then a duplicate it in encrypted form.
Crowley can easily read the message and only bother using Satoshi’s public key to decrypt the
duplicate if he is suspicious of whether Satoshi actually wrote it.
However, it seems inefficient to send a message twice. Clearly, Satoshi must send the entire
unencrypted message to get the message out to the world. But could the encrypted message
be shortened? In fact it can, by using cryptographic hash functions. Remember that if anyone
tries to tamper with a message, the hash of that message will be different as a result. Satoshi
can therefore simply calculate the hash output of his message and then encrypt only that hash
using his private key. Then anyone who reads the message can decrypt Satoshi’s hash output
(using his public key) and also calculate the hash of the unencrypted message, checking
whether the two agree.
Keep in mind that a hash of a message, no matter how long the original message, is a short
piece of data. Therefore, by only encrypting the hash of the original message, you can create a
short digital signature of a much longer message. More important, even the slightest alteration
to the unencrypted message would cause the cryptographic hash to be completely different,
thus preventing any interceptor from modifying the signed message. As a result, not only does
a digital signature prove that the real Satoshi signed the message, but it also proves that he
signed a very specific message. In this regard, digital signatures are even better than analog
handwritten signatures.
Using Digital Signatures
Using the RSA encryption scheme, implementing digital signatures is straightforward. Let’s
assume that we are using the same encoding scheme as in Table 7-2 and we want to send the
message “fade” unencrypted but signed. Table 7-4 shows how to use a digital signature to
prove authorship of the message.
Now we can send the message “fade” and sign it with ifda. The recipient doesn’t need any
additional information to read the message, because it can be read plainly. But to verify the
identity of the sender, the recipient needs to know the hash function used (in this case MD5),
the prime product n, and the public key of the sender, e. The recipient then decrypts the
signature with the public key to obtain the hash value, in this case 8808, and checks to see
whether it matches the MD5 hash of the message “fade.” If a match is made, the recipient
knows who the message came from and that the message was not altered in transit.
Table 7-4: Signing the Message “Fade” Using RSA Encryption
Ste
p

Instruction Example

ch07table2
ch07table2
ch07table4
ch07table4

1 Calculate the hash of the message using a suitable
cryptographic hash function (e.g., MD5). The hash output
must be less than the prime product n, which can be
accomplished by calculating the modulus of the output.*
h = MD5(message) (mod n)

fade encoded as 5034
h = MD5(5034) (mod
10579)
= 8808

2 Encrypt the hash, h, using the RSA encryption method,
namely calculate: s = hd (mod n), where s is the signature
(it is a ciphertext)

s = 8808^10357 (mod
10579)
= 8530
decoded as ifda

* If you are following along, keep in mind that the input format for a hash function is important.
The MD5 hash of the integer 5034 is not the same as the MD5 hash of the word 5034, which is
in text format. For numbers, the base of the number needs to be specified as well.
This is how digital signatures work. Of course, in this example, the prime product chosen was a
low number so the examples were easy to follow. In practice, RSA cryptography uses 512-bit or
1024-bit prime products (or even higher for military communications), which looks something
like this:
Example RSA-1024 key:

5708540643351253003745803928442300669566321160974683770675705367
94795107733730
2555449467671585284876326135547312465091842513308062672649065703
07315620158833
6794409395089283404219568759916726604265635656153071866002944861
04820050904319
1065262154874848937338866257399506142323572694928592907380693479
819082939185

Other small details differ in practice to further increase the security of the procedure.
Why Bitcoin Needs Cryptography
So why is cryptography necessary to make Bitcoin work, even though Bitcoin does not involve
sending secret messages? In Bitcoin, hash functions and digital signatures are used for the
following important purposes:
• Authorizing transactions with digital signatures
• Verifying the validity of the transaction history
• Proof-of-work in Bitcoin mining
• Extra protection for Bitcoin private keys
Let’s explore the functions of Bitcoin that require cryptography and then delve into the specific
methods that Bitcoin uses.
Authorizing Transactions with Digital Signatures
Bitcoin uses digital signatures to authorize transactions so that you, and only you, can spend
the bitcoins you own. With credit card payments and bank transfers, you authorize a
transaction by providing proof of your personal identity (and these days, the amount of proof
you have to show is getting quite burdensome). With Bitcoin, no personal information is tied to
any Bitcoin address; instead, you must prove that you own the private key. Showing people
your private key would certainly be valid as proof, but by knowing the private key, the people
you’ve shown could then claim they owned the bitcoins at that address. Therefore, you need
to prove that you have the private key without actually sharing it. But there’s more to it than
that.
A Bitcoin transaction contains a fair amount of information: the number of bitcoins transferred,
the address they are being transferred to, the transaction fee, and so on. You don’t want any of
that information to be altered without your permission, so in addition to proving you own the
bitcoins you are sending, you also need to ensure that the transaction details are followed
exactly as you wrote them. A Bitcoin transaction is a message with instructions, and by signing
it with a digital signature, you simultaneously prove that you have the private key and ensure
that the transaction details are what you intended. If the signature is missing or doesn’t match

the public key, nodes on the Bitcoin network will consider the transaction invalid and will not
add it to the blockchain.
Verifying the Validity of the Transaction History
Bitcoin depends on the blockchain being widely distributed among the nodes in the network.
But how can you be sure that any individual node in the network with a copy of the blockchain
has not been surreptitiously altered? A malicious attacker could try to distribute a fraudulent
blockchain where just a single transaction has been modified in the attacker’s favor. However,
such an attack could never work for several reasons. One reason is that the slightest change in
the transaction history would completely change the block hash of all the blocks after it in the
chain.
Each block in the blockchain contains a list of transactions and a hash of the transactions in the
previous block in the chain. Hence, it’s impossible to alter just one transaction in a block in the
middle without causing a mismatch between the expected block hash and the hash recorded in
the next block.
This verification provides an efficient way for a single node to check whether transactions in its
copy of the blockchain have been tampered with. Rather than checking every transaction in the
entire transaction history, a node can simply check whether the hash of each block matches the
recorded hash of subsequent blocks.
Proof-of-Work in Bitcoin Mining
Bitcoin mining is based on a lottery system that you can win only by guessing numbers
repeatedly, but that makes it is easy for others to check when you’re right. If this sounds similar
to a one-way function, that’s because it is. The one-way function used in Bitcoin mining is a
cryptographic hash function. Miners are given the output criteria (the output can be any
number less than some threshold), but by design, cryptographic hash functions make it difficult
to reverse calculate what the corresponding input needs to be. Therefore, Bitcoin miners can
only randomly choose different inputs, hoping that the output will be a number below the
threshold. Once a miner determines the correct input value, it is easy to prove his or her work
to others by sharing that value with others who can easily recalculate the hash.
Extra Protection for Bitcoin Private Keys
Authorizing transactions with digital signatures requires sharing your public key with others.
Although it is thought to be computationally infeasible to calculate a private key from a public
key, it is similarly difficult to calculate the input of a hash function given just the output, and it
is doubly difficult to do both. Instead of sharing a public key, users share a Bitcoin address,
which is a cryptographic hash of a public key. In fact, the public key is hashed twice using two
different cryptographic hash functions to create a Bitcoin address. This extra protection ensures
that no amount of analysis of a Bitcoin address can reveal the underlying private key.
Bitcoin uses cryptographic hash functions to accomplish a variety of other important tasks as
well. Next, you’ll explore the specific cryptographic methods Bitcoin uses.
Cryptographic Methods Used in Bitcoin

Public key cryptography is a high-level framework that can be implemented many different
ways. You learned how the RSA method, using integers factored into large prime numbers,
could be used to implement digital signatures. But how are digital signatures implemented in
Bitcoin? Many different cryptographic hash functions exist, and although the MD5 method

mentioned earlier is widely used, it is not sufficiently secure for a cryptocurrency (collisions
have been detected in MD5, resulting in two different inputs leading to the same output).
SHA256 and RIPEMD160 are the two cryptographic hash functions used in the Bitcoin protocol.
Cryptographic Hash Functions: SHA256 and RIPEMD160
Secure Hash Algorithm (SHA) was developed by the US National Security Agency (NSA). Race
Integrity Primitives Evaluation Message Digest (RIPEMD) was designed in the academic
community by Hans Dobbertin, Antoon Bosselaers, and Bart Preneel at the Katholieke
Universiteit Leuven.5
The prefixes SHA and RIPEMD refer to the underlying algorithms, and the numerical suffixes
256 and 160 refer to the bit-length of the output. A spectrum of other SHA functions, like
SHA224 and SHA512, output other bit-length hashes as well.
Both SHA256 and RIPEMD160 are widely used, but the SHA methods are more popular and
have undergone a higher degree of scrutiny from cryptographers. At the time of this writing,
nobody has detected a collision in either SHA256 or RIPEMD160, which is an important
measure of the security of a cryptographic hash function.
In the Bitcoin protocol, SHA256 and RIPEMD160 are used together to protect the public key
used in digital signatures. The SHA256 method is also used for the proof-of-work function in
Bitcoin mining and as part of the digital signature algorithm. Here are some examples of
encrypting a sentence with a slight variation in both SHA256 and RIPEMD160 (all of the
following outputs are in base 16 format):
SHA256("Crowley is trapped on an island")
=
1e8f7e62b42f07766c3c4367e670a328d73b7eb596602198f126324f013f30a5

A completely different result is produced with a single character change:
SHA256("Crowley is trapped on an Island")
=
91a382b6584261e0e7690da2c43cec9f7ce251b47396b543bddb3ed6ada8c9cc

The same happens using RIPEMD160:
RIPEMD160("Crowley is trapped on an island")
= 64d50d0853d09d97c4567117a616954ca648e46c

This hash is completely different:
RIPEMD160("Crowley is trapped on an Island")
= b84aec162a0aa5786541b5e4f3286f8734e3bc3c

As you’d expect and appreciate in an effective hash function, a minor change to the text
(capitalizing the word Island) completely changes the resulting hash value in both methods.
Now that you understand the hash functions Bitcoin uses, let’s discuss the algorithm Bitcoin
digital signatures use.
Crowley and the Unfortunate Jelly-Filled Donut Incident
For the remainder of this chapter, we’ll discuss the details of elliptical curve cryptography (ECC).
But before we delve into the details of this algorithm, and to help you understand the basic
concept behind it, let us tell you a story.

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote45

One day Crowley was driving through Cryptoville in his car, minding his own business, when
suddenly, BAM! His car was thrown into the air!

He had been driving by a donut shop that was trying to beat the world record for the largest
jelly-filled donut. Unfortunately, the bakers miscalculated the correct pressure of jelly to inject
into the donut, causing the explosion.

After tumbling through the air, Crowley landed safely and was relieved to realize he wasn’t
hurt. However, he was a bit shaken from this frightful incident, and his car was covered in jelly.
Because he had tumbled through the air, he was lost and no longer knew where he was in
Cryptoville. What was he going to do now?

Suddenly, Satoshi stepped out of a nearby house. Quite by accident, Crowley had found out
where the secretive Satoshi lived!

Crowley proceeded to explain to Satoshi what had happened to him and his car. Satoshi was
concerned to hear that Crowley was lost but also a bit relieved because it meant that his home
address was still a secret.
Crowley asked Satoshi to give him a ride home or call a tow truck. But Satoshi refused, saying,
“If I do either of those things, you’ll be able to figure out where you are in Cryptoville, and then
you’ll be able to figure out my secret home address. Luckily I have another idea: Why don’t you
come into my home as a guest and enjoy a cup of coffee as you regain your wits from your
harrowing experience today. I’ll be back in a couple of hours and will then share my plan to get
you and your car home again.”

Sure enough, Satoshi returned to the house after a while carrying an iPod, of all things. “OK,
Crowley, here’s what I did. I just drove to your house with my own car. While doing so, I
recorded my drive on this iPod and recorded every action as I drove along. When I turned the
steering wheel 10 degrees to the left, I said this on the recording. If I accelerated from 20 mph
to 40 mph, I recorded this as well. Everything I did I recorded at the exact time I did it.”
Crowley then understood the plan: Even though his car was covered in jelly and it was
impossible for him to see through the windows, he could still follow the simple instructions on
the tape. After all, his car motor still ran fine, and he could see the speedometer on his car’s
dashboard. Satoshi added, “It’ll be very hard for you to reverse engineer the exact physics of
how the car was driving based solely on the instructions I recorded on the iPod. Therefore, the
location of my home will remain unknown to you. However, to make it extra hard, I also took a
very circuitous route, driving through almost all of Cryptoville along the way to your house!”

But sure enough, using Satoshi’s iPod, Crowley was able to drive his car back home without
being able to see a thing through his car windows. He simply followed the instructions, and
when the recording finished, he was back home. He still didn’t have the slightest clue where
Satoshi lived, and he miraculously avoided hitting any pedestrians or other cars in the process!

To thank Satoshi for helping him, Crowley sent Satoshi an email inviting him to lasagna at
Crowley’s house on Saturday night and asking him to suggest a time for dinner. Here is the
email Satoshi wrote back:
Thanks Crowley—Dinner sounds great, and I love lasagna! Let’s meet at 9:25 P.M.
Oh, and to prove that this email is legit, I can tell you that I was on the 300 block of Main Street
driving north at exactly 38.7 mph when the iPod displayed 9 minutes and 25 seconds.
Being a stickler for verifying identities, Crowley tested this fact: He first had his car (still covered
in jelly) towed to the location mentioned in the email and then started the iPod at the 9 minute
and 25 second mark. Following the instructions on the iPod explicitly until they completed, he
once again stepped out of the car and found he was back at home!
This silly parable is meant to give you a rough outline of one way you could create a digital
signature: Imagine that Satoshi’s home address is Satoshi’s private key, and Crowley’s home
address is the public key. The instructions on an iPod are a one-way function that’s difficult to
reverse. Using this information, you could sign an arbitrary message (in this case the number
925, which corresponds to the meeting time). Only the person who knows the private key
(Satoshi’s home address) could generate this signature.
As you’ll see, with ECC, we’ll instead “drive around town” by jumping between points on a
special two-dimensional curve, which makes it even harder to reverse engineer the directions.
However, the overall process will remain roughly analogous to that in the story.
Moving Around on a Line
Before we start thinking about what’s involved in driving around on a curve, let’s use an easier
scenario and imagine driving around on a line (see Figure 7-1).
If we have a straight line that passes through the origin (i.e., the point at x = 0, y = 0), we can
create a new point on the line by using two points A and B to create a point C by simply adding
A and B. Here is the obvious formula for adding two points:

A(x1, y1) + B(x2, y2) = C(x3, y3) x3 = x1 + x2 y3 = y1 + y2
We need to add the two x-coordinates to get a new x (simply 1 + 3 = 4) and add the two y-
coordinates (also 1 + 3 = 4). Note that we can also use a simple geometric trick to generate
point C without using arithmetic: Simply start at point B and then move at the same angle and
amount as point A is from the origin.

ch07fig1
ch07fig1

Figure 7-1: Adding two points (A and B) on a line to get point C
For a line, this addition process is very simple but is not useful for cryptography (and equally
not useful for creating driving instructions for our “car” that are hard to reverse engineer). But
as you’ll see, the process for adding points is very different with elliptical curves.
Elliptic Curve Digital Signature Algorithm (ECDSA)
Instead of integer factorization-based schemes, digital signatures in Bitcoin are based on ECC.
Although integer factorization works well in principle, faster computers and better algorithms
to factor integers have over time increasingly required the use of ever larger prime factors to
ensure reasonable security. The recommended size of encryption keys used for RSA encryption
is between 1024 and 4096 bits. In contrast, elliptic curves offer the same functionality but are
not affected by advances in factoring integers; therefore, shorter keys can be used (a 256-bit
key in ECC is believed to offer comparable security to a 1024-bit key in an RSA-type scheme). In
short, ECC is thought to be stronger than methods based on factoring integers for the same key
length.
Bitcoin uses elliptic curves to create digital signatures, specifically by using a protocol called the
Elliptic Curve Digital Signature Algorithm (ECDSA). An elliptic curve is any two-dimensional
curve that satisfies the equation:

y2 = x3 + ax + b
A few sample curves that satisfy this equation are shown in Figure 7-2. Public/private key pairs
are generated by choosing points on these elliptic curves that are mathematically related to
each other.

ch07fig2
ch07fig2

Figure 7-2: Different elliptic curves can be generated using different parameters in our starting
equation.
As with the property of a straight line, when you add the coordinates of any two points on the
curve, the result is another point on the curve.
However, with elliptic curves addition has a special meaning and is defined as follows:

Clearly, this formula for adding two points is much more complex than the addition formula we
used for straight lines. Figure 7-3 shows an example elliptic curve with two points A and B and
the resulting point C created by following these addition rules.

ch07fig3
ch07fig3

Figure 7-3: Two points (A and B) on an elliptic curve are added to create point C, using our
special method of addition.
In the example in Figure 7-3, points A and B are not special in any way. Choosing different A
and B points would lead to a different point C (Figure 7-4), which is the whole point of using this
type of addition for cryptography: In the earlier jelly donut incident, Crowley had to drive a
long, circuitous route back to his house so Satoshi’s home address would remain obscured.
Repeatedly jumping between points on the elliptic curve using this method of addition can help
you obscure your private key in a digital signature system in the same way, as you’ll soon see.

Figure 7-4: When different points A and B are chosen, a different point C is created.
Similar to lines, you can use a geometric trick to calculate the sum of adding two points on
elliptic curves (i.e., without needing to do the tedious arithmetic). Simply draw a line through
points A and B, and find another location where the line intersects the curve. Then draw a
vertical line starting at this point of intersection and see where else it crosses the elliptic curve.
This second crossing is point C (Figure 7-5).

ch07fig3
ch07fig3
ch07fig4
ch07fig4
ch07fig5
ch07fig5

Figure 7-5: Using simple geometry, you can find point C by just drawing a line through points A
and B and then moving vertically to find point C.
A fundamental property of elliptic curves is that any line that intersects at least two points must
also intersect a third (except for vertical lines and lines that are tangent to a point on the
curve6).
Of course, if we want to “drive around” our elliptic curve, as in our conceptual example
involving a car, it’s somewhat awkward that we need two points to generate every new point:
As with a car, it would be ideal to go from a single point to another single point so our “car”
only has to be in one place at a time. Fortunately, this is possible with elliptic curves as well by
using a form of multiplication to multiply a point on the curve by an integer, which is the same
as adding a point to itself multiple times. It might seem like the geometric trick does not work
in this case. How do you draw a straight line through two points if they are in the same place?
You can probably guess by imagining what happens when you consider adding two points, A
and B, that are very close together: The line that passes through A and B will resemble the
tangent to the curve near those points. So when we add A + A (or equivalently, multiply A by
2), we draw a tangent to the curve at point A and find where else it intersects. Then we draw a
vertical line, as before, to find the resulting point, 2A (Figure 7-6).

Figure 7-6: With only one starting point, we can point multiply by 2 by using the tangent line
through point A.
To calculate 3A, you first calculate 2A, as we just did, and then adding an additional A is just like
adding any two nonoverlapping points. In elliptic curve terminology, calculating kA, where k is
an arbitrary integer, is called point multiplication. Calculating kA for large values of k is
computationally expensive without efficient implementations.
So as with our conceptual example, we’ll now use point multiplication to “drive” from one point
on the curve to another. In ECC, point multiplication is used to generate the public key from the
private key. However, there will be one important difference between our jelly-filled donut

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote46
ch07fig6
ch07fig6

story and how ECC really works. In our story, Satoshi’s house represented a private key and
Crowley’s house a public key, but in ECC the starting point and destination point are both
publicly known—it is only the path between them that is secret. So it is in fact the path that is
the private key; the destination point is the public key (as it was before), and the starting point
is simply a standard location that everyone agrees to use. In ECC it’s as if Satoshi’s home
address were widely known to be in the center of a very complex labyrinth—everyone knows
where he lives, but no one knows how to get there. Given a previously agreed-upon point on
the curve, G, and a private key, d, the public key, Q, is calculated by point multiplication such
that Q = dG. Note that the public key is a point on the curve but the private key is just an
integer.
So far we’ve been depicting elliptic curves as smooth, continuous functions that extend into
infinity. However, computers have limited memory, and it isn’t possible to use real-valued
numbers as coordinates for points on the curve without introducing rounding errors (which are
unacceptable in cryptography). For practical implementations, only integer-valued points on
elliptic curves are allowed, and modular arithmetic is used to keep all of the points within
certain bounds (from 0 to 512, for example). This technique of using only integer-valued points
is best illustrated with an example. Let’s first choose the same elliptic curve that Bitcoin uses,
which is called a Koblitz curve (Figure 7-7), using the parameters a = 0 and b = 7.

Figure 7-7: A Koblitz curve
We then choose a prime modulo p so that the elliptic curve satisfies this equation:

y2 = x2 + ax + b(modp)
NOTE
In this type of math notation, the modulo operation is performed after the additions so first you
calculate x2 + ax + b and then you perform mod p on the result.
Bitcoin uses a very large p value (specifically p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1),
which is important for cryptographic strength, but we can use a smaller number to illustrate
how “driving around on integer-valued points on a Koblitz curve” works. Let’s choose p = 67. In
fact, many curves satisfy the modular equation (namely, every curve where p is added to or
subtracted from the b parameter any number of times; see the left-hand chart in Figure 7-8),
and from those curves we can use all of the points that have integer-valued coordinates (shown
in Figure 7-8 as dots).

ch07fig7
ch07fig7
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote47
ch07fig8
ch07fig8
ch07fig8
ch07fig8

Figure 7-8: On the left is a standard picture of the elliptic curve in the form we’re familiar with
(the bold curve) with additional curves that are drawn by using other multiples of p (the thin
curves.) On the right, we’ve taken a larger section of the coordinate plane that is an expansion
of the upper-right quadrant. This is the section of the curve that is most convenient when using
the integer-based variant of ECC.
Given the choice of p = 67, only 79 unique points with integer-valued coordinates exist, and 78
of them can be found in the upper-right quadrant from 0 < x < 66 and 0 < y < 66 (shown in the
chart on the right in Figure 7-8; note that the left chart shows the entire range). The number of
unique points, n, is called the order of the curve. The 79th point is the zero point, which is
not at (0,0) as you might expect but rather is the point at y = infinity. The zero point is
important because it is valid output from an addition or point multiplication operation and
therefore needs to be carefully accounted for (see the sample code in “Pseudocode for Elliptic
Point Summation and Point Multiplication” on page 158).
As a last step before we can generate public/private key pairs, we need to choose one of the 79
points to be a generator point, G. The generator needs to have the property that one can
calculate every one of the other 78 points by multiplying G by some integer, k (i.e., so you can
generate every point by calculating G, 2G, 3G, ..., 79G). If we choose the point (5,47) as our
generator point, we can check whether by successively incrementing k we can travel to every
point in the set (see Figure 7-9).

ch07fig8
ch07fig8
ch00leve1sec109
ch00leve1sec109
ch00leve1sec109
ch00leve1sec109
ch00leve1sec109
ch00leve1sec109
ch00leve1sec109
ch00leve1sec109
page_158
page_158
ch07fig9
ch07fig9

Figure 7-9: On the left, starting with point G, we multiply G successively to create new points at
2G, 3G, and 4G. On the right, you see what happens when this multiplication is repeated even
further.
If the order of the curve is prime (i.e., there is a prime number of points), any point except the
zero point works equally well as a generator. If the order is not prime, regardless of the k
value, some points will travel only to a subset of points (which can lead to a reduction in
cryptographic strength). In our case, we can safely use the point (5,47) because it generates all
the other 78 points (as depicted in the chart in Figure 7-9).
To return to our conceptual car example, point G in this figure could be Satoshi’s house and
point 4G, for example, could be Crowley’s house. The points between represent the
complicated drive through Cryptoville. Until you carry out the point multiplication operation, it
certainly isn’t obvious what the path from G to 4G is. The 4 in 4G gives away the answer,
namely that the path connecting those points can be found by taking three steps from G.
However, if G and 4G were instead labeled A and B, it would take a long time to guess how to
get from one to the other. In other words, if you know only the start and end points (i.e., the
public key), it would take a long time to guess the path (i.e., the private key). But if you know
the starting point and the path, then calculating the end point is easy. In terms of Bitcoin, it
means that if someone knows the Bitcoin address that contains your money (which is based on
the public key), it is still impossible for that person to figure out your private key to spend the
bitcoins at that address.
Signing a Bitcoin Transaction Using ECDSA
Now that we’ve chosen p, a, b, and G and determined the order, n, we have all the
information we need to create a public/private key pair following the steps in Table 7-5.7
Table 7-5: Creating a Public/Private Key Pair with ECDSA, Assuming p = 67, a = 0, b = 7, G =
(5,47), n = 79
Ste
p

Instruction Example

1 Generate a private key, d, which can be any integer from 1 to (n
− 1). It should be hard to guess. This can be done using a random
number generator or other clever means.*

d = Random # from
1 to 78
Choose d = 13.

2 Generate a public key, Q, by point multiplication of the private
key, d, and the generator point, G. Note that this is a one-way
calculation. It is very hard to determine d given G and Q.

Q = d × G
= 13 × (5,47)
= (7,22)
(see Figure 7-10)

* A clever way to generate a seemingly random but memorable private key is by coming up
with a passphrase (i.e., Crowley and Satoshi sitting in a tree) and feeding it into a cryptographic
hash function, which outputs an integer. This is called using a brainwallet. Because there are
just slightly fewer than 2256 points on the curve Bitcoin uses (because the p value is much
higher than the one we are using), brainwallets can use the SHA256 hash function (due to its

ch07fig9
ch07fig9
ch07table5
ch07table5
ch07fig10
ch07fig10

256-bit output).

Figure 7-10: Here are the 13 points we “drive through” as we point multiply to create a digital
signature.
Now let’s look at how we sign messages with our private and public keys (or Bitcoin
transactions): The receiver of our message will need all the values we have calculated so far
except the private key, namely p, a, b, G, n, and Q, in order to verify that the signature is
valid. Let’s assume that our message is this: Please update the blockchain so that 5 bitcoins
from Crowley are given to Satoshi. The steps to sign the message are listed in Table 7-6.
Table 7-6: Signing a Message with ECDSA, Assuming p = 67, a = 0, b = 7, G = (5,47), n = 79,
d = 13
St
ep

Instruction Example

1 Calculate the hash of the message, h. The
Bitcoin protocol uses the SHA256 function for
this purpose. The output of the hash needs to
be less than n, so we need to calculate h =
SHA256(message) (mod n).

h = SHA256(“Please update the
blockchain so that 5 bitcoins from
Crowley are given to Satoshi”) (mod
79)
= 46

2 Choose a random integer, k, between 1 and
(n − 1).

k = Random integer from 1 to 78
Choose k = 6.

3 Calculate the point (r,s*) = kG. (r,s*) = k × G = 6 × (5,47)
= (46,27)

4 Find s such that s × k (mod n) = (h + (r ×
d)) (mod n).
The signature is the pair of numbers (r,s) (not
a point on the elliptic curve unless by
coincidence).

Left side:
s × k (mod n)
= s × 6 (mod 79)
Right side:
(h + (r × d)) (mod n)
= (46 + (46 × 13)) (mod 79)
= 12
Left = Right when s = 2

When the message is signed, the receiver will need p, a, b, n, G, Q, and the signature pair (r,s)
(and the message, of course). However, the parameters p, a, b, n, and G are standard to the
Bitcoin protocol and therefore don’t need to be shared with every transaction. The only
information specific to your message that needs to be shared is Q, (r,s), and the message. The
message recipient can verify that you signed the message with your private key by using the
steps in Table 7-7.

ch07table6
ch07table6
ch07table7
ch07table7

Table 7-7: Verifying a Signature with ECDSA, Assuming the Receiver Gets Q = (7,22), (r = 46, s
= 2), and the message
Ste
p

Instruction Example

1 Repeat the hash calculation of the
message to get the hash:
h = SHA256(message) (mod n)

h = SHA256(“Please update the blockchain
so that 5 bitcoins from Crowley are given to
Satoshi”)(mod 79)
= 46

2 Find w such that w × s (mod n) = 1 (w
is called the modular inverse of s).

w × s (mod n) = 1
w × 2 (mod 79) = 1, w → 40

3 Calculate u = h × w (mod n). u = h × w (mod n)
= 46 × 40 (mod 79)
= 23

4 Calculate v = r × w (mod n) (if u and
v are the same, it is just a coincidence).

v = r × w (mod n)
= 46 × 40 (mod 79)
= 23

5 Calculate (tx,ty) = uG + vQ. (tx,ty) = u × G + v × Q
= 23 × (5,47) + 23 × (7,22)
= (11,47) + (2,22) = (46,27)

6 If tx = r, the signature is valid. tx = 46, r = 46, signature is valid

In our car example, we were able to sign messages in a similar way by relating a message to a
point that the car passed as it traveled toward its destination. However, this is where this
analogy reaches its limits: In the car example, providing information about where the car
traveled conveys some clues as to the path the car took, compromising the secret of Satoshi’s
address a bit. Using the math in Table 7-7 shows that signing a document does not provide any
useful information that compromises the private key. We can sign as many documents as we
want, and the private key will continue to remain fully obscured.
So this is how bitcoins are spent. When you sign a Bitcoin transaction with your private key,
other nodes in the Bitcoin network can check that your signature is valid (by matching your
public key and the contents of the transaction) and safely know you authorized it. Of course, if
your private key falls into the wrong hands, someone else can sign transactions and steal your
bitcoins.
Note that until you actually need to spend bitcoins, there is no need to share the public key.
Although in principle sharing your public key far in advance of signing a transaction should be
no problem, it’s possible that a weakness in ECC will be discovered that could allow an attacker
with enough time and computing power to figure out your private key from your public key
(i.e., figure out d, given G and Q in the equation Q = dG). So why give an attacker the extra
time if it isn’t necessary? If an attacker doesn’t know your public key, the ability to determine
your private key is drastically reduced. For this reason, Bitcoin users share addresses instead of
public keys.
The Bitcoin address described at length earlier in this book is actually a hash of the public key,
using the SHA256 and RIPEMD160 hash functions. The public key is first input into the SHA256
hash function, and then the output is fed as input into the RIPEMD160 hash function. The
resulting double hash is used to generate the Bitcoin address in a standard way.8 When you
spend bitcoins from a Bitcoin address, you must provide your public key, and others can check
that the public key corresponds to the Bitcoin address by repeating the same double hash
calculation (and of course, the signature proves that you have the private key).
In cryptography, the double hash scheme results in extremely strong security. Given only a
Bitcoin address, it would require a simultaneously discovered weakness in three different
cryptographic methods—SHA256, RIPEMD160, and ECDSA—for an attacker to guess a private
key. If a weakness was discovered in one method but not the others, there would be time to
update the cryptographic methods used in Bitcoin before anyone’s bitcoins were at risk.
The Security of Bitcoin’s Cryptography
A common anxiety among those new to Bitcoin is to wonder whether the cryptography used in
Bitcoin is secure enough to protect against threats. Could a big, powerful government with

ch07table7
ch07table7
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote48

huge computing resources break Bitcoin’s cryptography? What about a very clever hacker who
might bring down the entire system? What about super powerful computers of the future, like
quantum computers?
These are healthy concerns to have when a person is deciding whether Bitcoin is a sound
protocol and worth investing in. Every Bitcoin private key is some number between 1 and 2256,
and in principle a computer could continue generating numbers billions or trillions of times per
second until it found one that could access your bitcoins. However, 2256 is a very big number;
in fact, it’s approximately 1077 or a 1 with 77 zeroes behind it. Putting that in perspective,
approximately 1050 atoms make up the earth. If you chose a single atom in the earth at
random, and then chose a second atom, also at random, the odds that you picked the same
atom twice would be significantly greater than randomly guessing someone’s private key.
Could an extremely powerful computer, based on futuristic technology that is yet to be
invented, guess a private key? Theoretical physicists have estimated that the smallest amount
of energy to perform the simplest computation (changing a 0 to a 1 or vice versa) requires at
least 3 × 10−21 joules (this is known as the Landauer limit9). A computer that used this amount
of energy per computation would theoretically be the most efficient computer allowed by the
laws of thermodynamics. If you then could harness 100 percent of the energy of the sun (not
just the tiny fraction that falls on the earth, but the entire amount, by building a sphere of
perfect solar panels surrounding the entire star), with no losses, you could theoretically capture
1034 joules per year. If you harvested that energy for 100 years and fed all of it into your
maximally efficient computer designed for the single purpose of guessing someone’s Bitcoin
private key, it would be able to perform only 1055 computations. Of course, calculating a
private key is more complicated than flipping a 0 into a 1, but even if we assume that this
computer could calculate 1055 private keys, it would run out of energy before it would even
have onetrillionth of a chance of correctly guessing yours.
In summary, it is physically impossible, independent of future technological developments, to
create a computer that could steal bitcoins by randomly guessing private keys. However, that
does not eliminate the concern that a weakness exists in the cryptographic methods that
Bitcoin uses. Perhaps it is easier than we think to work backward from a Bitcoin address to
calculate the underlying private key. Here, it is important to note that the cryptographic
methods used by Bitcoin are standard methods used by governments and major corporations
to ensure security in communications, financial transactions, and network security. If a
weakness exists in the methods that Bitcoin uses, a weakness exists in the methods the entire
world uses.
Also, if weaknesses are discovered in the cryptographic standards, such that new methods
need to be used, it is possible to update the methods that Bitcoin uses without affecting how
Bitcoin functions. A new version of the SHA256 algorithm may be used in the future, or ECDSA
might be replaced with a different digital signature algorithm. However, Bitcoin’s reliance on
cryptography in general will not change.
The bottom line is that Bitcoin’s cryptography has a solid technical foundation. If a hacker ever
does steal your bitcoins, it is far more likely the hacker would do so by finding a bug in a
specific implementation of this cryptography that is flawed or by using the many other ways
we’ve discussed, such as simply stealing your private key through a computer virus. It is far less
likely that a hacker would be able to steal your money by finding a flaw in the mathematics of
the cryptography.
Pseudocode for Elliptic Point Summation and Point Multiplication
To follow along with the elliptic curve digital signature examples earlier in the chapter, you’ll
need to be able to correctly calculate elliptic point summations and point multiplication
operations using modular arithmetic. Pseudocode for the implementation of these operations
follows:
Assumptions: p, a, b, G, and n are defined elsewhere
Elliptic curve point summation (ECPS): A + B = C
ECPS(A,B) returns a point on the elliptic curve, C
Begin

If A is the zero point then return C = B➊
If B is the zero point then return C = A
If Ax != Bx then➋

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote49

find inv such that inv*(Bx – Ax) (mod p) == 1
lambda = (By – Ay)*inv (mod p)
Cx = lambda^2 – Ax – Bx
Cy = -Ay + lambda*(Ax – Cx)
return C = (Cx (mod p), Cy (mod p))

If Ax == Bx and Ay != By then return C = the zero point➌
If Ax == Bx and Ay == By then➍

find inv such that inv*2Ay (mod p) == 1
lambda = (3*Ax^2 + a)*inv (mod p)
Cx = lambda^2 – 2Ax
Cy = -Ay + lambda*(Ax – Cx)
return C = (Cx (mod p), Cy (mod p))

End

In this elliptic curve point summation (ECPS) pseudocode, which allows you to add two points
on the elliptic curve to generate a third point, we first check whether A or B is the zero point ➊
(recall that this is the single weird point that’s part of an elliptic curve that is essentially at
infinity). Next, we handle the typical case where two points have different x locations, and we
don’t need to worry about the slope between the points being divided by zero ➋. Then, we
handle the case where the slope is indeed zero, which forces C to be at the zero point ➌.
Finally, we handle the case where A and B are the same, in which case we need to calculate the
answer differently using a mathematical derivative to calculate C using the point’s tangent line
➍.
Elliptic curve point multiplication (ECPM): kA = C
ECPM(k,A) returns a point on the elliptic curve, C
Begin

C = A
Do the following k times:

C = ECPS(C,A)➊
return C

End

For elliptic curve multiplication, we simply run the ECPS function repeatedly ➊. This is really
inefficient! In fact, this method of point multiplication is so inefficient that it ceases to be a
“one-way” function. It is just as computationally difficult to calculate the public key (knowing
the private key) as it is to guess the private key (knowing the public key). For the small number
of points we were using in this chapter, it’s fine to use our bruteforce approach, but for
practical applications, more efficient schemes for point multiplication need to be used. We
leave this as an exercise for the reader.

8
BITCOIN MINING

New bitcoins are created through Bitcoin mining. In some sense, Bitcoin mining is similar to
digging for gold: It takes time and effort—hence the term mining. The difference between
mining gold and mining bitcoins is that a Bitcoin miner uses electricity and computational labor
rather than physical labor. Mining is also the process by which new Bitcoin transactions are
added to the block-chain, or the public ledger. By adding a new block of transactions to the
blockchain, the miner who added the block is rewarded with newly minted bitcoins (as well as
old bitcoins in the form of transaction fees).
The number of new bitcoins being mined from each block is diminishing slowly over time and
will continue to do so until all 21 million bitcoins have been excavated. But unlike mining for
gold, Bitcoin miners know exactly how many bitcoins are left to be mined. By 2140, every
bitcoin will have been extracted and will be in circulation.
Although it is potentially lucrative to mine bitcoins, it is not for everyone. As with gold, most
people, regardless of how much they want gold, would not mine it themselves. Similarly,
earning a profit mining bitcoins is challenging and risky. Should you mine bitcoins? Probably
not. In this chapter we’ll explore the difficulties and hazards, but the short answer is that
deciding whether to mine bitcoins is like deciding whether or not to mine gold. Mining gold in
financially meaningful quantities requires a high degree of expertise, access to cheap labor and
electricity, raising (and risking!) significant capital, and waiting years for a return on investment.
If you are reading this book, it’s best for you to leave Bitcoin mining to the professionals.
However, if you are not motivated by profit and just want to mine (a trivial amount of) bitcoins
for fun, you can certainly do that!
Why Is Bitcoin Mining Needed?
Whenever someone creates a new currency, one awkward problem usually surfaces at the
outset: They need to figure out how to distribute newly minted money. If a government creates
the money, this problem is easily resolved because the government can simply compensate
itself and use the money to pay for government services. (Or, as in the United States, a
government can use a complex scheme involving a Federal Reserve and treasury bond
underwriting to lead to the same end result, giving the federal government capital it can spend
that originated through the minting process.) However, if you’re creating a distributed currency
like Bitcoin, without a central party, dispersing newly minted money is surprisingly difficult. Part
of the genius of Bitcoin’s design was that Satoshi found a sensible way to distribute bitcoins.
The currency would be given to those people willing to do computational work to protect the
network, aka the miners.
Because protecting the Bitcoin network requires effort, time, and money, anyone willing to do
this work would merit a monetary incentive. Therefore, Satoshi’s strategy of using bitcoins as
an incentive for miners acted as a decentralized mechanism for giving away new coins and
created a community dedicated to protecting the network through the mining process. Let me
tell you a little story to help you understand how mining protects the Bitcoin network.
A Parable of Two Generals
“The fat king is dead!” they yelled through the streets of the Principality of Cryptoville the day
the king died. King Karl was not popular among the common folk for his cruelty to the peasants
of his kingdom was exceeded only by his girth. Unfortunately, his son Crowley was crowned
that same day, and he was believed to be very much his father’s son.
For this reason and more, two generals, the General of the North and the General of the South,
banded together in a plan to overthrow the monarchy. Quickly, they were able to conquer most
of the lands outside the castle walls. All that remained to free the land from tyranny was to
storm Castle Cryptoville!

The two generals’ armies gathered at the north and south sides of the castle. On the east and
west sides of the castle were the Kraggly Mountains, a treacherous mountain range with steep
cliffs that had taken the lives of many Cryptovillians through the ages.

On the south side of the castle, the General of the South exclaimed, “Yes! This is the time to
strike! I shall send a message to the north to begin the attack!” However, it then occurred to
the general that his messenger would have to cross the Kraggly Mountains. What if a mishap
prevented the message from getting through? If this happened, he, the General of the South,
would attack the castle on his own and might be defeated by the foe. So the General of the
South revised his plan: “I will send a message to the north to attack and will ask the General of
the North to send a confirmatory reply indicating that he received my message!”
When the General of the North received the message, he declared, “Splendid! Surely we will be
victorious! I shall send the confirmation to the south. Oh, but just to be sure, I’ll ask the General
of the South to return a message so I know he received my confirmation. I definitely wouldn’t
want to attack the castle on my own.”
After receiving the confirmation, the General of the South asserted, “Great, we’re almost ready.
Now all I need to do is wait for the north to send a confirmation that the general received the
confirmation of my confirmation. Victory shall be ours after I get my answer—maybe sometime
tomorrow!”
That night, King Crowley’s henchmen snuck into the north and south camps and assassinated
both generals as they slept.
Applying the Parable to Bitcoin
In the story of the two generals, two parties needed to achieve a consensus on a plan.
However, their mode of communication was based on unreliable mediums—the messengers

who had to cross the perilous mountains. As a result, their naïve attempt to attain this
consensus created an infinite loop of confirmations for confirmations that led to their doom.
Could the generals have used another strategy to coordinate their attack?
The parable is based on an old math puzzle that was studied long before the existence of
Bitcoin. The short answer to the question is that the generals would never be 100 percent
certain that the other general had agreed to participate in an attack, and this can be proven
mathematically.1
A more generalized version of this puzzle, called the Byzantine Generals Problem, is the same
as the preceding parable except more is at play than just two generals. With this generalized
version of the puzzle, with more than two armies, we can posit not only that the messages are
unreliable but also that one or both of the generals may be in cahoots with King Crowley,
sending misleading messages to the other generals.
This is precisely the problem a decentralized cryptocurrency needs to solve to determine which
Bitcoin transactions sent across the network are valid: That is, if two conflicting transactions are
sent via the network and involve the same coins, which of those transactions should take
precedence? In fact, Bitcoin offers a probabilistic solution to the Byzantine Generals Problem.

In essence, the generals need to mine blocks that require significant computational resources
to solve. In those blocks, they state the exact time the attack should occur. Also, as soon as a
general finds out that another block has been completed, that general should cease his effort
to create a new stand-alone block. Instead, each general should simply create a block
containing the message “I confirm that I agree with the time in the block by general ABC.” Then
other generals should create their block to link to this new block and include the message, “I
confirm with the confirmation by general XYZ of the time by general ABC.” By continuing this
process indefinitely, these blocks will form a blockchain, adding weight to the time suggested
in the initial block (a genesis block). This exact blockchain strategy was described by Satoshi
soon after he created Bitcoin.2
However, a couple of open questions remain about this algorithm’s description: Aren’t we back
to square one, piling confirmations on top of confirmations ad infinitum? Surprisingly, the
answer is no. Because of the computational effort involved in creating blocks, every new block
generated as a confirmation of a previous block provides statistical information about the total
computational power possessed by the entire population of generals. Consequently, when a
given genesis block has approximately six more confirmations amassed on top of it than any
other genesis block, the result is almost (but not quite) absolute certainty that the majority of
generals are in agreement with the suggested attack time. (However, because this is a
probabilistic solution, certainty will always be a bit less than 100 percent, which is why the
original Two Generals Problem is still considered unsolved in a purely theoretical sense. But
with Satoshi’s approach, certainty can be arbitrarily close to 100 percent.)
However, this approach of using proof-of-work and a blockchain to coordinate the attacks of
the generals still has a subtle flaw: A general who is lazy could cheat the network by never using
her computer to mine blocks. Because blocks are awarded randomly by solving the mining
puzzle, any one general could just leave her computer turned off during the entire
process—saving electricity—but still benefit from the consensus. No one would discover that
she shirked her duty, because not every participant will successfully mine blocks in either case.
But in the case of Bitcoin, Satoshi had the genius to add an extra detail that solves this
freeloader problem: The system pays miners with bitcoins as a reward! By paying a handsome

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote50
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote51

reward, the Bitcoin network maintains an adequate number of miners at all times, a reward
that is not possible in the simpler solution to the Byzantine Generals Problem without a
currency built into the network.
Now that you have a good conceptual understanding of Bitcoin mining and why it’s important,
let’s dive into the details of how Bitcoin mining helps prevent attacks against the network and
how it enables the distribution of new currency.
Preventing Attacks with Mining
How does mining prevent attacks? When designing a peer-to-peer payment network, the
creator must assume that some peers on the network will try to deceive other, and that all
peers in the network will act in their own self-interest. So what might go wrong with the Bitcoin
network? One obvious problem is that someone might create a transaction assigning himself a
million bitcoins. However, because a public record of all Bitcoin accounts exists in the
blockchain, everyone can easily identify when someone is trying to give himself money that he
doesn’t own; unless a person can provide a valid signature for the transaction using a Bitcoin
address that contains a million coins, no other node on the Bitcoin network will accept this
transaction.
However, a more difficult problem to pinpoint is when a peer creates one ledger that includes a
transaction spending her own bitcoins (for which she can create a digital signature) and then
produces a second ledger in which those bitcoins were never spent (or sent to a different
person). An abusive peer could first add a transaction to the blockchain to send bitcoins to you,
and then after you gave her something of value (e.g., a cake), she could produce a new ledger
in which that transaction never happened. The second ledger would conflict with the first
ledger, so this abuse would certainly not go unnoticed, but it wouldn’t be clear which ledger
was correct. Presumably, the first ledger would be correct and any subsequently created ledger
that conflicts would be invalid (after all, you already gave away your cake). But peers on the
network may disagree as to which ledger came first (especially those with malicious intent), and
without a central authority, who is to say which peers are correct? Bitcoin mining solves the
problem of ordering transactions so everyone can agree which ones came first.
Every Bitcoin user constantly receives blocks from other users on the network. These blocks
may be part of different, competing branches in the main Bitcoin blockchain and therefore
represent conflicting versions of the true ledger. Hence, the software running on every user’s
computer constantly evaluates blocks as they appear on the network and decides which one is
the most trustworthy and likely to be part of the accepted blockchain in the future. How does it
decide?
It simply picks the one that has the most blocks (i.e., has the longest blockchain). This is
considered the oldest and so came first. A blockchain with 12 blocks has existed for longer than
one with 7 blocks. However, this method of deciding which chain to trust works only if a
malicious peer cannot create a second ledger, immediately add 10 (or more) blocks to it, and
make it seem as though the second ledger predated the first.
For this reason, the Bitcoin software checks how much computational work was required to
add each block in competing branches. The amount of work used to add a block is easy to verify
(they call it a proof-of-work algorithm because you can prove that you did the work). The
branch with the “most work” is usually the longest one (i.e., the one with the most blocks), but
if someone cheated by making a long branch with lots of “easy” blocks, it wouldn’t count. For a
malicious peer to create a second ledger, erase his old transactions, and convince everyone his
ledger was first, he would have to add blocks to it more quickly than the rest of the network.
The only way to accomplish such fraud would be to privately control more computational
power than the entire Bitcoin network. This type of abuse is called the 51 percent attack, and
there is a good reason why it has never happened.
The only way to carry out a 51 percent attack is to invest more heavily in Bitcoin mining than
everyone else on the network combined, and the only advantage gained is being able to
double-spend your own bitcoins. But the rewards of doing so are limited: Such an attack would
undermine people’s confidence in the Bitcoin system, and the attacker’s bitcoins would
become devalued.
Let’s suppose that a malicious attacker decided to make such an investment. What would be
more lucrative: to abuse the ledger or to collect mining rewards? The economic incentives of
Bitcoin mining strongly favor the latter. So if someone did amass the power to abuse the

system, the only economic advantage would be to use that power honestly and simply mine
Bitcoins better than everyone else.
Distributing New Currency with Mining
As mentioned in the beginning of the chapter, besides ordering transactions correctly, Bitcoin
mining also serves as a mechanism to distribute a new digital currency. It is not an easy task to
create a new currency and distribute it widely. Satoshi could have initially given himself 21
million bitcoins and then arbitrarily handed them out. But that would have been a bit random
and most likely wouldn’t have created a meaningful, valued currency.
Because Bitcoin was intended to be a currency with a finite supply, miners can’t generate new
bitcoins forever. This means that Satoshi needed to somehow choose a point in time by which
all the bitcoins would be generated. If all bitcoins were generated in the first year of Bitcoin’s
existence, the currency would have favored early adopters too much. Conversely, if bitcoins
were generated too slowly, newcomers might not have had enough incentive to take a chance
and devote their computing power to this strange, new project called Bitcoin. Also, if bitcoins
were generated so slowly that it would take thousands of years before they were all mined,
bitcoins might not have been perceived as a finite commodity but rather one whose supply was
constantly being inflated. For better or worse, Satoshi chose a scheme in which bitcoins would
be distributed over a century at a rate that is reduced by half approximately every four years3
until the total number eventually reaches 21 million (see Figure 8-1).

Figure 8-1: Bitcoin awarded over time: The left graph shows the reward schedule for bitcoins
until the year 2031. The right graph extends the time range until the year 2169.
The graph on the left shows the total number of bitcoins in circulation until the year 2031. As
you can see, the amount in circulation continues to increase, but the pace slows over time
because the block reward is cut in half at regular intervals. Consequently, the bitcoins a miner
receives every few minutes, as she wins the mining race, will be much less in future years.
Nearly all of the approximately 21 million bitcoins will be distributed by 2031. However, small
amounts of the currency will continue to be distributed long past that date. The graph on the
right shows the distribution schedule to the year 2169. Bitcoin’s success in its first five years
suggests that Satoshi was at least in the right ballpark when he estimated how rapidly bitcoins
should be distributed.
When all the bitcoins have been mined, Bitcoin mining will no longer serve its distribution
purpose; rather, it will just be a mechanism for securely processing transactions.
Will people still mine bitcoins then? What happens to the public ledger? Instead of new
bitcoins, the reward for being a Bitcoin miner will only be the transaction fees paid by the users
(which may be substantial in years to come).
How Does Bitcoin Mining Work?
Bitcoin involves a network of computers around the world that constantly broadcast and relay
new transactions to each other. Each computer on this network is a node. Because of Bitcoin’s
decentralized nature, some nodes can appear or disappear at random times without impacting
the network as a whole. No special central nodes exist.
Nodes can be grouped into three categories: those that only broadcast transactions; those that
broadcast and relay transactions; and those that broadcast, relay, and create new blocks with
transactions. Each type of node requires substantially more computational resources than the

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote52
ch08fig1
ch08fig1

previous type. The last of the three includes Bitcoin-mining nodes and requires the heftiest
computers.
When a Bitcoin node is launched (i.e., when you launch Bitcoin software on your computer), it
connects to other nodes through the Internet to form a somewhat haphazard (but also robust)
mesh network. A mesh network has no central nodes that manage traffic. Instead, all nodes
equally share the responsibility of propagating information across the network.
Figure 8-2 shows what a small piece of the Bitcoin mesh network might look like.

Figure 8-2: A conceptual drawing of the Bitcoin network. The circles represent nodes, all of
which are arbitrarily connected to other nodes via network connections, shown as lines.
Transactions and newly mined blocks are continuously broadcast over this network.
In this figure, you can see what happens when, for instance, you buy a cup of coffee using
bitcoins. Most likely, you would do this from a mobile phone and would be running the most
basic type of node, the broadcast-only node (shown as the circle labeled B at the top of the
figure). The transaction steps are as follows:
1. The starting node (your phone) creates a transaction that transfers your coins to the Bitcoin
address owned by the coffee shop. This node then immediately sends this transaction to its
peers on the mesh network, which are most likely relay nodes.
2. The relay node simply propagates this transaction to other relay nodes, allowing the
transaction to quickly propagate everywhere and to everyone. Actually, it is not quite that
simple, since the relay nodes need to be wary of malicious or spammy transactions: If a relay
node just forwarded any message, the Bitcoin network would quickly collapse in a flood of junk
transactions. Therefore, all the relay nodes check that the transaction is correctly formatted,
make sure it has valid signatures, and look through the most current version of the blockchain
to ensure the money being spent is verifiably present in the source account of the transaction.
3. If the transaction passes muster, it arrives within seconds at all the mining nodes on the
network. These mining nodes add this transaction to a preliminary block, which they will
attempt to mine (a process we’ll describe in more detail shortly).
4. If the mining is successful, the newly mined block is then broadcast across the network,
confirming the block’s transactions and giving the miner a mining reward. Although it typically
takes a few minutes for a block to be mined, once the block has been found, it will again
traverse the entire network within seconds.
Ultimately, every transaction must be recorded on the blockchain. So nodes that only broadcast
must link up directly with nodes that mine or indirectly via nodes that relay. Mining nodes may
also apply specific arbitrary criteria to transactions, such as favoring those with a larger
transaction fee. If the fee is too low, some mining (or relay nodes) may ignore the transaction.
However, just because some nodes ignore a transaction doesn’t mean others will: As long as
the transaction finds a mining node that accepts it, the transaction will eventually be added to
the blockchain. Usually, mining nodes collect as many transactions as possible (to collect the
most fees). Although each transaction has only a small fee attached to it, many thousands of
transactions can be included in a block, and the sum of these fees, which are paid to the miner,
can be substantial. But due to memory constraints,4 the number of transactions that can be
included in a block has a maximum limit. For this reason, some miners exclude transactions

ch08fig2
ch08fig2
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote53

whose fees are too low (or zero).
Although all mining nodes collect transactions and organize them into blocks, only one of the
nodes (the lucky one) adds its block to the block-chain.5 The fortunate miner then collects the
mining reward, which is the sum of the block reward (the newly minted bitcoins in each block)
and all the transaction fees for the added block. Nodes that relay transactions and those miners
who didn’t add a block do not receive any bitcoins from transaction fees or otherwise.
Once the lucky miner is selected, the new block is broadcast to the rest of the network, and all
of the other mining nodes stop working on their old block and start working on a new one. So
how is the lucky node decided on? It is the node that solves the block by finding a special input
to the SHA256 hash function.
HowMiners Solve a Block
Bitcoin mining requires a great deal of computational power, but what do miners calculate?
They repeatedly calculate the double SHA256 hash6 of slight variations of certain information,
called the block header, in their new block. When a block of transactions is created, the block
header contains a summary of information about the block, including the time it was created, a
hash of the transactions within the block, and other data, which we’ll delve into shortly.
Importantly, in the block header is a field for an arbitrary number called a nonce,7 which the
miner chooses. In fact, it is the only part of the block that is under the full control of the miner.
So how does a miner choose a value for this nonce?
A solved block (i.e., a block that will be accepted by others as part of the blockchain and the
one the miner is paid for) occurs when the double SHA256 hash of the block header results in a
number that is less than some predetermined threshold, known as the difficulty target. If the
result is greater than the target, the block remains unsolved. When this happens, the miner
must try a different nonce, which is contained in the header and hence affects the hash.
Because cryptographic hash functions produce completely new outputs when the input is
changed by even the tiniest amount, changing the nonce value results in a totally new hash for
the entire block header. By repeatedly changing the nonce value, eventually a hash output will
be found that is less than the target. Typically, a miner simply increments the nonce by 1 in this
search until a successful nonce value is found. When a working nonce is found, the block is
solved.8

Anatomy of a Block
Let’s take a closer look at a block’s structure so you can see how the miners’ actions fit into the
big picture. At the top level, a Bitcoin block essentially has four parts:
Anatomy of a Block

➊ blocksize (e.g., 868 KB)
➋ block header (see below)
➌ transaction count (e.g., 1,278)
➍ list of transactions

Blocksize is a number at the top of the block that indicates the size of the entire block ➊. This
is followed by the block header ➋, which we’ll discuss in detail shortly. The rest of a block
stores a count of the number of transactions ➌ followed by a list of all the transactions ➍.
One of these transactions is the block reward, which the miner adds to assign himself some
new bitcoins. These bitcoins are created from nothing. All bitcoins in existence at one point
originated as such a block reward.
Including the nonce ➏, the block header consists of six pieces of data:
Block header structure

➊ bitcoin version number
➋ double SHA256 hash of the previous block header
➌ double SHA256 hash of all of the transactions in the block
➍ current timestamp
➎ the difficulty target
➏ the nonce

At the top is a version number ➊. It exists to facilitate the ability to distinguish blocks in the old

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote54
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote55
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote56
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote57

and new format if ever a major change in the blockchain structure occurs in the future, as
Bitcoin is refined. Next, the block header holds a hash of the previous block’s header ➋. It is a
very important field because this value links blocks together in a chain: When miners mine a
block, not only are they securing the transactions in their own block, but they are also securing
the transactions in all previous blocks that make up this version of the chain. By creating this
block, a miner is essentially casting a vote stating, “I believe this is the true history of all Bitcoin
transactions, and my block builds upon the work of other miners, as indicated by this hash of
the previous miner’s block.”
Next, the header contains a hash of all transactions in the current block ➌. When a node on
the Bitcoin network receives a block from other nodes on the network, this hash allows them to
verify that the transactions in the block haven’t been tampered with; the hash of the
transactions must exactly match the value in this field.
Subsequently, a timestamp ➍ indicates when the block was created. For the most part, Bitcoin
disregards real-world time. In fact, mining blocks in the blockchain can be thought of as a
primitive sequential clock, and the ticking of this clock in the form of newly mined blocks is the
only concept of time Bitcoin takes into account.
However, setting the block difficulty is one specific instance in which Bitcoin needs to recognize
real-world time. Block difficulty ➎ is periodically calculated using the timestamp of previous
blocks and is also a field in the block header. Because Bitcoin is designed to solve new blocks
roughly every 10 minutes, it needs a way to measure how far apart blocks have been spaced in
the recent past, which is the reason the timestamp field exists. If Bitcoin difficulty wasn’t
periodically adjusted based on real-world time, its block rate would be determined by the
currency’s popularity. As a result, the Bitcoin network could become unstable if it became too
popular or not popular enough. In both of those instances, the block rate would become
unreasonable, and the Bitcoin network would no longer function.
So how is the difficulty target value decided? When Bitcoin was created, the target was set to
this certain easy number:

26959535291011309493156476344723991336010898738574164086137773096960
≈ 2.7 × 1067 or 2224

To put this value in perspective, the SHA256 hash function outputs values between 0 and 2256

(~1.16 × 1077), and this target requires the output to be less than 2224 (about one-billionth of
the maximum output). This is similar to requiring that a random number generator that
generates values between 0 and 1 must output a number less than 0.000000001 to solve a
block. This target value is the easiest Bitcoin has ever used. Most ordinary personal computers
(in 2009) could calculate new hashes at a rate of about 1 million hashes per second, or 1
megahash/s (MH/s). Because the odds of a hash being less than this target value are 1 in a
billion, a computer hashing at 1 MH/s would need about 1,000 seconds (~17 minutes) to have a
good chance9 at solving a block.
If a faster computer were to start mining at 2 MH/s, the target would automatically decrease to
reduce the odds of finding a block (thereby taking longer). The difficulty stored in the
blockchain header is expressed as a ratio between the initial target used by Bitcoin (when it
started) and the current target. Initially, the difficulty was equal to 1 (because the initial target
was the current target), and it has been mostly increasing ever since. If the hash rate decreases
(e.g., due to computers withdrawing from the network) so that blocks are found more slowly
than ten minutes on average, the difficulty will decrease (which in Bitcoin’s first five years has
happened very rarely).
As you can see, target numbers are large and unwieldy. Therefore, it is more convenient, when
discussing bitcoin mining, to calculate a difficulty, which is simply the ratio of the current target
number to the target number on Satoshi’s very first block, the genesis block:

The difficulty is not adjusted immediately in response to increases or decreases in the hash
rate. Instead, the difficulty is adjusted every time the blockchain grows by 2,016 blocks, which
happens approximately every two weeks (2,016 × 10 minutes = 14 days). If it takes less than
two weeks to mine 2,016 blocks, the difficulty is increased, but if it takes longer than two
weeks, the difficulty is decreased.
During the first five years, the mining difficulty in Bitcoin increased from 1 to over 50 billion. At

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote58

this difficulty, an ordinary personal computer (tablet, laptop, etc.) would be lucky to solve one
block every 3.5 million years! This difficulty corresponds to a network hash rate that is
~360,000,000,000 MH/s, or 360 petahash/s (PH/s). All of the world’s conventional
supercomputers combined would hash at a rate less than 1 PH/s.
The incredible rise in computational power used for Bitcoin mining derives from a combination
of wider adoption and the use of increasingly specialized hardware. In the first year, most
miners used the CPUs on their laptops to mine bitcoins. Then people realized they could
repurpose graphics cards designed originally for demanding computer games to mine bitcoins.
The graphics cards, specifically the graphics-processing units (GPUs) on them, were thousands
of times faster and more energy efficient than CPUs. Not long thereafter, hardware developers
discovered they could use field programmable gate arrays (FPGAs), which are specialized
devices used for computer chip prototype development, to mine bitcoins even faster than
GPUs. Until this point, nobody had manufactured hardware specifically to mine bitcoins. GPUs
and FPGAs were off-the-shelf hardware that was just repurposed for Bitcoin mining. However,
when the Bitcoin economy became extensive, it became worthwhile for computer chip
developers to create application specific integrated circuits (ASICs), like the one in Figure 8-3.

Figure 8-3: An early ASIC Bitcoin-mining machine from the Avalon Corporation. The small chips
arranged in a grid are each custom ASIC chips designed to perform Bitcoin hash operations.
These single-purpose computer chips were manufactured specifically to mine bitcoins in the
fastest, most energy-efficient way possible. Bitcoin ASICs are optimized to calculate SHA256
hashes. Today, practically all Bitcoin mining is done with ASIC-based hardware. Further
increases in speed and efficiency are being achieved continually by designing the chips with
smaller and smaller features (from 130 nm to 65 nm to 28 nm features, and so on).
Consequently, more calculations can be made per unit of area. Each new breakthrough in
hardware performance leads to a network hash rate that increases by many orders of
magnitude (see Figure 8-4), especially if the price of bitcoins rises at the same time (further
justifying capital investment in mining hardware).

ch08fig3
ch08fig3
ch08fig4
ch08fig4

Figure 8-4: The amount of computation performed over time on the Bitcoin network (in
terrahashes, or trillions of hashes per second). The left graph uses a traditional linear scale for
the y-axis, in which the enormous computing power of ASIC miners in 2013 dwarfs all previous
methods of mining. In the right graph, we use a logarithmic scale for showing the hash rate of
the network, making it possible to see the progress in computing power on the network more
clearly, progressing from CPU, to GPU, to FPGA, and finally ASIC mining.
At a difficulty of 50 billion, a Bitcoin-mining device capable of 10 TH/s could find a block about
once every 8 months, which is an average time, and the variance can be significant. For Bitcoin
miners who want to receive a more steady income, it is best to join forces with other miners in
what is known as pooled mining.
Pooled Mining
Although the network solves blocks about every 10 minutes, individual miners might only solve
a block once every few months. With such an unpredictable revenue stream, it can be difficult
to plan and operate a Bitcoin-mining operation. To help make the reward more regular and
predictable, most miners who don’t control enormous computational power (i.e., greater than
1 percent of the network hash rate) join a mining pool.
A mining pool is a collection of miners who combine computational resources and then split
the block reward. From the network’s perspective, a mining pool is a single mining node, but
hundreds or perhaps thousands of individual miners are calculating hashes within that node. A
mining pool solves blocks more often than an individual miner; therefore, the miners’ income is
more frequent. When the block reward is divided among the miners, it is usually allocated
proportionally based on the number of hashes a miner contributed. Because it is difficult to
know exactly how many hashes an individual contributed, the typical measurement of
contribution is in the form of calculated shares. Although the exact details vary between
mining pools, a miner earns a share when she calculates a hash output that is less than a much
easier-to-reach target than the real target. As a result, it might take an individual miner years
before he would find a hash less than the real target but only a few minutes to find a hash less
than the pool’s share target. The number of shares accumulated by a miner represents how
much of the pool’s hashing power that miner contributed.
Using a pool, a casual Bitcoin user can try her hand at mining and collect tiny fractions of
bitcoins using a moderately powerful computing device (e.g., a cheap Bitcoin-mining ASIC that
can be plugged into a USB slot). Although it may not be profitable, considering the costs of
electricity, it can be fun to accumulate a few microbitcoins by contributing computational
power to the network.
Bitcoin Mining for Profit
Should you mine bitcoins? In short, probably not. Bitcoin mining requires significant
computational power, which requires electricity, expensive hardware, and space. Your return
on investment will depend heavily on the number of other miners there are and how much
computational power they’re providing. Because the number of bitcoins distributed to the
network is not affected by the number of miners, the more miners, the more diluted the
reward will be.10 Bitcoin mining can only be profitable for those with the most efficient
hardware, in terms of energy and capital efficiency, and cheapest electrical power. Because
hardware manufacturers have the lowest capital costs per mining device, many profitable

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote59

Bitcoin-mining companies manufacture their own hardware. These manufacturers may also
hire their own research and development engineers to design newer and more efficient
computer chips (i.e., ASICs) for Bitcoin mining. In summary, Bitcoin mining is an extremely
competitive business and will likely become more so as Bitcoin adoption increases.
Perhaps if you have your own wind farm or solar panel array and have more electricity than you
know what to do with, you might be able to mine bitcoins profitably. But it still requires
careful consideration of the capital costs and the opportunity cost compared to just buying
bitcoins directly. A common mistake in estimating the viability of a Bitcoin-mining venture is to
put too much weight on the exchange rate (in whichever other currency you’re using). You
should always compare the return from Bitcoin mining against the number of bitcoins you
could have purchased for the same initial investment. The future exchange rate should make
little difference in your investment decision. If it is not profitable to mine bitcoins today when
the rate is $200 per bitcoin, it makes no difference if they will be $1,000 per bitcoin tomorrow;
you should just buy bitcoins instead of mining them.
It is also important to reasonably project the future hash rate. Although it is impossible to
predict the future, more than likely the network hash rate will continue increasing very quickly
during Bitcoin’s first 10 years.11 See the following example calculation, keeping in mind that
even if mining is more profitable than buying bitcoins directly, it’s still a lot more work!
Example calculation: To mine or to buy?
Equipment: One super-duper-hashing-miner made by Miners-R-Us

Hash rate: 1 TH/s
Power consumption: 0.4 kW
Price: 5 BTC (includes shipping)

Local electricity cost: 0.001 BTC/kWh → monthly power costs:
0.30 BTC
Current difficulty: 4 billion
Time to solve a block = difficulty * 2^32 / (hash rate)

= 4 billion * 2^32 / 1 TH/s = 6.5
months per block

(0.153 blocks per month)
New bitcoins per block = 25 BTC
Avg. transaction fees per block = 0.5 BTC
Total mining reward per block = 25.5 BTC
Revenue per month = Total mining reward per block * blocks per
month

= 25.5 BTC * 0.153 = 3.92 BTC

Scenario #1 – Difficulty increases by 100% per month
Month 1: Rev. = 3.92 BTC, Power costs = 0.30 BTC, Monthly profit
= 3.62 BTC
Month 2: Rev. = 1.96 BTC, Power costs = 0.30 BTC, Monthly profit
= 1.66 BTC
Month 3: Rev. = 0.98 BTC, Power costs = 0.30 BTC, Monthly profit
= 0.68 BTC
Month 4: Rev. = 0.49 BTC, Power costs = 0.30 BTC, Monthly profit
= 0.19 BTC
Month 5: (Power costs exceed revenue → turn off mining device!)
Total profits: 3.62 + 1.66 + 0.68 + 0.19 – 5 = 1.15 BTC(mining is
profitable)

Scenario #2 – Difficulty increases by 200% per month
Month 1: Rev. = 3.92 BTC, Power costs = 0.30 BTC, Monthly profit
= 3.62 BTC
Month 2: Rev. = 1.31 BTC, Power costs = 0.30 BTC, Monthly profit
= 1.01 BTC
Month 3: Rev. = 0.44 BTC, Power costs = 0.30 BTC, Monthly profit
= 0.14 BTC
Month 4: (Power costs exceed revenue → turn off mining device!)
Total profits: 3.62 + 1.01 + 0.14 – 5 = -0.24 BTC(better to just buy

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote60

bitcoins)

If you decide to purchase Bitcoin-mining hardware, be wary. Anyone selling Bitcoin mining
hardware has calculated that it would be more profitable to sell to you rather than use the
hardware to mine himself. Carefully do your research on the vendor, the hardware details, and
the shipping timelines. Receiving a mining device a few months later than you anticipated can
mean the difference between a positive and a negative return on your investment (because the
network hash rate will be higher).
Theoretical Hash Rate Limits
As computers become more powerful and energy efficient, and especially if Bitcoin adoption
continues to increase exponentially, the network hash rate is expected to grow significantly.
How high can it go? If more and more computers start mining and the price of a bitcoin remains
fixed,12 eventually the amount of bitcoins each miner earns won’t cover the costs of electricity.
Ultimately, it can be argued that the limit of the network hash rate depends on the energy
efficiency of the mining hardware (see Table 8-1).
Table 8-1: Energy Efficiency of Different Forms of Bitcoin-Mining Hardware (Calculated as a
Ratio Between Hash Rate and Power Consumption)*
Mining device Hash rate

(GH/s)
Power
(W)

Energy per
hash (J/GH)

Laptop with single-core CPU 0.0005 100 200,000
Laptop with efficient quad-core CPU 0.02 50 2,500
Medium-end GPU (400 cores) 0.1 200 2,000
High-end GPU (2000+ cores) 0.5 300 600
High-end FPGA 0.8 40 50
130 nm ASIC device 10.0 80 8
65 nm ASIC device 60 240 4
28 nm ASIC device 1,000 800 0.8

* Values are representative of typical mining devices; specific designs may vary significantly.
To determine whether Bitcoin mining is profitable using a certain type of hardware, we must
combine three factors: the energy efficiency of the hardware, the cost of electricity, and the
overall hash rate of the network. The graph in Figure 8-5 shows the relationship between
these three factors.
The curves on the graph show how advanced the hardware needs to be, given the electricity
costs. The lines on the right side represent instances of higher electricity costs. Clearly, if the
electricity costs more, you would need a more advanced hardware setup to be profitable at
mining. In this case, more advanced hardware means hardware that consumes less electricity
for every joule of energy it consumes.

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote61
ch08table1
ch08table1
ch08fig5
ch08fig5

Figure 8-5: Profitability threshold curves for comparing hardware efficiency, electricity cost, and
network hash rate on the Bitcoin network. Given your current electricity cost, a curve can be
drawn that relates the efficiency needed by your mining hardware (in J/GH) to be profitable, for
a certain network hash rate. If you can draw a point below your electricity cost curve for your
mining equipment, then you’ll be able to mine profitably on the Bitcoin network.
If bitcoins increase in value, the relative cost of electricity decreases, and the breakeven point
for the network hash rate increases. If a mining device has an efficiency of 0.8 J/GH and
electricity costs only 0.01 mBTC per kWh, the network hash rate at which mining would no
longer viable would be 18,000 PH/s, corresponding to a difficulty of 2.5 trillion. So is it possible
the hash rate could go even higher than it is today?
The ASIC designs in Table 8-1 show that the energy per hash drops as the feature dimensions
decrease. If we assume that in the future high-efficiency 14 nm ASICs that use only 0.1 J/GH will
exist, then at 0.01 mBTC/kWh the breakeven hash rate would be greater than 100,000 PH/s.
Computer chips made with features smaller than 14 nm dimensions don’t exist yet, but
Moore’s law13 has persistently defied predictions by skeptics that computer chips have reached
the smallest feature sizes possible. Clearly, the network hash rate could potentially be
enormously higher than it is today.
Decentralization in Bitcoin Mining
Bitcoin’s success depends on being a decentralized network. In its infancy, anyone could join
the Bitcoin network as a mining node; however, now mining is done primarily by professionals
with resources, expertise, and capital well out of reach of the average Joe. Is this trend
recentralizing Bitcoin? This is a subject of debate among Bitcoin users, miners, and developers.
Another related subject we haven’t discussed in detail yet is the limit to the number of
transactions that can be included in each block. Obviously, a real, physical limit exists in the
sense that an individual cannot include an infinite number of transactions in any block.
However, a smaller limit is imposed as a rule in the Bitcoin protocol (i.e., although the physical
limit might be in the range of millions of transactions per block, the rule-based limit is in the
thousands of transactions range). The original purpose of this self-imposed limit14 was to
prevent the blockchain from becoming bloated with pointless transactions (i.e., spam), but
some have argued that the limit serves a greater purpose, which is to maintain
decentralization.
In addition to having a computing device that can perform SHA256 hashes very quickly, mining
nodes and relay nodes must have sufficient storage space to store a full copy of the
blockchain. If the blocks that make up the chain become much larger than they are now, not
only will miners need faster computers, but their systems will also need the capability of storing
substantial amounts of data (possibly in the form of large data centers). This would further
increase the capital requirements of miners and inevitably lead some to abandon the
profession. Fewer mining nodes would make the network more centralized by degrees. For this
reason, some miners have advocated for limiting the number of transactions per block to a
small number (although this would ultimately drive up transaction fees). Is such a desire
justified?
Although it’s a complicated issue, we can use the gold mining analogy to explain. Is gold a
centrally controlled commodity? Very few people, by percentage, have the resources, time, and
expertise to mine gold. However, no monopoly exists on gold mining; any well-financed venture
can search for gold and attempt to mine it. Similarly, even though Bitcoin mining might no
longer be viable for casual users and instead become a venture performed by companies and
organizations, a single institution would never obtain sole control of Bitcoin mining.
Nonetheless, it is best to keep a close eye on the future number of Bitcoin miners.

ch08table1
ch08table1
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote62
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote63

9
UNDERSTANDING THE DIFFERENT TYPES OF BITCOIN WALLETS
In Chapter 2 we recommended using the Bitcoin wallet program Electrum, which is free and
open source, runs on most devices, and is ideal for beginners. However, hundreds of other
Bitcoin wallet programs are available, ranging from simple to sophisticated, and new ones are
being released constantly as developers compete to add new features and slicker interfaces.
But beneath the slicker interfaces and occasionally gimmicky features, some fundamental
differences between Bitcoin wallet programs exist. The goal of this chapter is to help you
understand those differences so you can make an informed choice about the most useful
Bitcoin wallet for your needs.
In this chapter, we’ll occasionally use the terms Bitcoin wallet or just wallet to mean Bitcoin
wallet program, despite the fact that a Bitcoin wallet normally refers to just a list of addresses
and private keys.
Wallet Software Design Fundamentals
At a minimum, a Bitcoin wallet program needs to let a user send and receive bitcoins, as well as
keep track of how many bitcoins are available to spend. In other words, a Bitcoin wallet
program must be able to (1) create and broadcast transactions to the Bitcoin network, (2)
generate new Bitcoin addresses, and (3) scan the blockchain to detect whether you’ve received
any bitcoins at those addresses. The major differences between different wallet designs
primarily involve these three functions and how they are implemented. The design choices that
support these differences are as follows:
1. Offline vs. online transaction signing
2. Random vs. deterministic key generation (versus single key generation)
3. Full vs. simplified payment verification
These design choices have significant consequences for the computational resources required,
the security of the stored bitcoins, and even the nature and effectiveness of backups. There are
no right choices. Some users are better off using a wallet that requires only a single device and
the least amount of computational power, whereas a large enterprise might prefer software
that emphasizes security. In the following sections, we explain each design choice in detail so
you can make an informed choice.
Offline vs. Online Transaction Signing
Bitcoin wallet programs need private keys in order to sign transactions before they can be
broadcast to the Bitcoin network. In the simplest design, these private keys are found in the
user’s Bitcoin wallet, which is stored locally on the user’s device in a wallet.dat file. This is the
way the first Bitcoin wallet program, Bitcoin-Qt, worked. However, this design is vulnerable to
attackers, who could attempt to remotely access the device over the Internet, copy the wallet
file, and try to extract the private keys. A more secure design involves splitting the Bitcoin
wallet and the software that manages it into two components: one with the private keys and
the other without. The component with the private keys is usually stored in a highly secure
location and is used for transaction signing. The component without the private keys can be
stored anywhere, possibly in many locations at once, and is called a watch-only wallet.
As the name implies, you cannot directly spend money stored in a watch-only wallet. Instead, if
you want to make a purchase, you would need to take an extra step to sign your transactions
with the private keys. This second step is usually done via a second computer that isn’t
connected to the Internet (to prevent hacking attacks) and is used solely to store private keys
and sign transactions with them as needed. This security technique, called offline transaction
signing, was discussed to some extent in Chapter 3 as a strategy for securely storing large
amounts of bitcoins, but it offers other benefits as well.
Watch-only wallets are particularly useful for point-of-sale terminals (i.e., cash registers) where
the cashier needs to receive bitcoins from a customer but never needs to (and may not be
authorized to) spend them. Importantly, because watch-only wallets do not store any private
keys, if a point-of-sale terminal was stolen, the bitcoins it contained would remain secure. In
addition, watch-only wallets can be safely installed on mobile phones or run from low-security
web servers (requiring only a simple username and login for access) to allow users to monitor

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03

their funds without the risk of the wrong person gaining access to them.
Many Bitcoin wallet programs can be run in one of two modes: a full mode (where a single
wallet program and computer are used for all steps) or a watch-only mode. If a wallet program
advertises a watch-only mode, it typically implies that the same software can also be used for
offline transaction signing. Hybrid wallets are also available in which some of the Bitcoin
addresses are watch-only, whereas other addresses have their private keys stored on the online
device. As a result, the same device can be used for spending from a low-security checking
account and for monitoring a more secure savings account.
Depending on how new Bitcoin addresses are generated, watch-only wallets may or may not
have to be synchronized with their offline component. Typically, a new Bitcoin address must be
generated on the offline computer and then imported into the watch-only wallet (without
importing the corresponding private key). However, with deterministic key generation
(described in the next section), watch-only wallets can generate new Bitcoin addresses on their
own without knowing the private keys that correspond to them.
NOTE
Deterministic key generation is very useful for point-of-sale terminals, because they won’t run
out of deposit addresses in situations that involve numerous customers.
Random Key Generation vs. Deterministic Key Generation (vs. Single Key
Generation)
All Bitcoin wallet programs provide new users with at least one randomly generated Bitcoin
address and private key. How and whether additional addresses are generated is a design
choice that can incite very strong opinions among Bitcoin developers. The original Bitcoin wallet
program assumed that users would never reuse an address after spending bitcoins from it.
Every time a user wanted to spend bitcoins, a certain amount would go to the intended
recipient, but the rest would be moved to a new, randomly generated Bitcoin address called
the change address. This approach helps protect the privacy of the user, because it is more
difficult for an external observer to track an individual’s bitcoins if the person continually
changes addresses. It’s not possible to distinguish the transfer of bitcoins to a change address
from the transfer of bitcoins from one person to another. Not everyone likes this behavior,
though; some think it’s easier to have just one Bitcoin address (like having one email address)
and aren’t as concerned about privacy. So some Bitcoin wallet programs provide only a single
address that is continuously reused. These single key generation wallet programs allow you to
generate additional addresses manually, but the default behavior is to reuse existing addresses.
Among the Bitcoin wallet programs that constantly generate new addresses, differences in
implementation exist. Recall that a private key is a 256-bit integer that is usually generated by
some random process. From the private key, Bitcoin wallet programs can calculate the
associated public key (which is a point on an elliptic curve; see Chapter 7 for the cryptographic
details), which in turn can be converted into a Bitcoin address by applying the RIPEMD160 and
SHA256 hash functions. To generate a collection of private key/Bitcoin address pairs, many
programs use correspondingly as many random numbers. This is known as random key
generation. Every time a user needs a new Bitcoin address, a new random number is used as
the private key. The drawback to this approach is that backups need to be updated
regularly—essentially, every time a new address is created. This is particularly important to
keep in mind in the context of change addresses. If you send some of your bitcoins to a friend
and the remainder of your balance is sent to a newly generated change address, potentially the
majority of your funds are no longer backed up! Some unfortunate incidents have occurred in
Bitcoin’s history in which users of random key generation–based wallets deleted or lost their
wallets shortly after their funds were sent to a new change address but before they updated
their backup.
An alternative approach is deterministic key generation. With this approach, only the first
private key is a randomly chosen 256-bit integer, which is known as the master private key, and
it has a corresponding master public key. Whenever the user needs a new Bitcoin address, a
new private key is chosen that is related to the master private key by a simple mathematical
relationship (no randomness is involved). In the simplest implementation, the master private
key is simply incremented by 1 to generate a new key (e.g., if the master private key is the
number 47, subsequent private keys would be 48, 49, 50, etc.). The advantage of this approach

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07

is that a single backup, created when a user first creates a new Bitcoin wallet, is sufficient and
never needs to be updated.1 In fact, this is how Electrum works. Recall that in Chapter 2,
Electrum prompted you to write down a 12-word mnemonic for backup purposes. That
mnemonic was, in fact, a master private key.2 All of the Bitcoin addresses in your Electrum
wallet can be derived from this master private key.
Combining Deterministic Key Generation with Watch-Only Wallets
Imagine the following scenario:
• Lisa owns a restaurant that accepts Bitcoin.
• All the waiters in the restaurant have Bitcoin wallets on their phones to accept payments.
• Lisa wants to be the only person who can spend the money sent to these wallets.
Clearly, it would be very convenient if Lisa could set up this system, but it seems like it would be
a technical challenge: Every waiter would need the ability to create tons of new Bitcoin
addresses on demand in their wallets, yet Lisa still needs to be the only person with access to
the private keys that power each wallet.
However, when you combine deterministic key generation with a watch-only wallet, this type
of system is actually straightforward: Surprisingly, it is possible for a watch-only wallet (running
on every waiter’s phone) to create many new public keys arbitrarily without having any
knowledge about the private keys associated with them!
This is all Lisa has to do:
1. Create public and private keys on her computer using deterministic key generation.
2. Give a public key to each waiter along with a program that supports a watch-only feature as
well as deterministic keys.
3. Waiters can then accept as many payments with their wallets as they like.
4. Only Lisa can spend the money in these wallets using her computer’s wallet. Her computer is
the only computer able to generate the corresponding private keys for all Bitcoin transactions
in the restaurant.
Whether you run a restaurant, a bank, or any other business, having a payment mechanism
whereby your employees can arbitrarily accept payments from customers but only you, the
owner of the business, can unlock the money is a powerful feature.
The Math Behind Deterministic Key Generation with Watch-Only Wallets
So how is it mathematically possible to generate new keys using only public key information?
To explain, we’ll refer to the cryptography on how private keys and public keys are
mathematically related. In Chapter 7, we explained that given a secret private key, d (let’s call
this a master private key), the corresponding (master) public key, Q, is determined by the point
multiplication operation:

dG = Q
Recall that both G and Q are points on the elliptic curve, but that G is publicly known to
everyone and is a hard-coded constant in the Bitcoin protocol (whereas Q is unique to you). The
master Bitcoin address is then derived from Q using several hash functions and other
formatting.
The obvious way to deterministically generate a new Bitcoin address is to first choose a new
private key, dnew= d + 1, and then calculate the corresponding new public key, Qnew:

dnewG = Qnew

However, this method of generating a new public key requires you to know the master private
key. So what if you don’t know the master private key? Could you generate a new Bitcoin
address with only the knowledge of a master public key? Yes!
We can rewrite the equation for Qnew as follows:

dnewG = (d + 1)G = dG + G = Qnew

Observe that the term dG can be rewritten as the master public key, Q:
Q + G = Qnew

As a result, we can calculate new public keys using only the knowledge of the master public key
and the public constant G. Additional public keys can be generated by adding any number of G
points:
Q + 2G = Qtwo

Q + 3G = Qthree

...

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote64
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#ch02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote65
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07

Of course, a danger of the deterministic key generation approach is that if your master private
key falls into the wrong hands, all of the derived Bitcoin addresses would be compromised.
Also, from a privacy standpoint, if someone sees your master public key (which becomes public
information once you send bitcoins to the corresponding address), that person can derive your
subsequent public keys in an attempt to track your spending.
Although we won’t delve into the mathematical details, deterministic key generation allows for
another, even more advanced Bitcoin wallet feature, hierarchical deterministic wallets, that
may appeal particularly to large organizations. The master private key can be branched into
sub-master keys, which can be further branched into sub-submaster keys and so on. Each has a
property that allows any key at one level to access the bitcoins held at every level below it. For
example, a bank manager may hold a level-two private key (the level-one key is held by the
CEO), and his staff may each hold level-three keys. Everyone shares the same hierarchical
wallet, but the manager has access to his own funds and those of his staff, and the staff can
access only their own accounts. Hierarchical deterministic wallets might also be useful for
families in which the parents want to give their children bitcoins but maintain access as well.
Full vs. Simplified Payment Verification
Bitcoin’s central feature is that you don’t have to trust an individual, third-party, or central
institution. However, Bitcoin wallet programs must be able to verify that the transactions they
receive are valid. In this context, it is important to distinguish between the blockchain (the
immutable public document that correctly lists every valid Bitcoin transaction) and someone’s
copy of the blockchain, which is what you have access to. The former is an abstract concept,
whereas the latter is the practical reality. When you connect your wallet program to the Bitcoin
network, it connects to several nodes that will send your program transaction data, but you
cannot assume that data is valid. If you ask a stranger on the Internet to pay you 2 BTC for an
expensive watch you are selling, and a node you are connected to indicates you have received 2
BTC shortly thereafter, is it safe to mail the watch? A valid transaction needs to (1) have the
correct digital signature and (2) use bitcoins that originated in a mining block reward and have
not yet been spent. All Bitcoin wallet programs can verify the first need with complete
certainty, but the second concern is addressed with varying degrees of certainty depending on
the design of the program.
Bitcoin wallet programs can verify transactions either by keeping their own complete copy of
the blockchain, which is referred to as full payment verification, or by using an abridged
version, which is called simplified payment verification (SPV).
Full payment verification wallets, also called thick or heavyweight wallets, require a complete
copy of the blockchain. They can verify that bitcoins used in a transaction originated from a
mined block by scanning backward, transaction by transaction, in the blockchain until their
origin is found (and the wallets can check whether those bitcoins were ever double spent).
These wallet programs are often active participants in the Bitcoin network in that they not only
handle the user’s transactions but they also verify and relay other people’s transactions (in
these cases, computers running such programs are called full nodes). All Bitcoin miners are also
full nodes (i.e., they need a complete copy of the blockchain to mine).
One problem with full payment verification wallets is that they are very resource-intensive and
take a long time to initialize. The blockchain, in its 5th year, was greater than 15GB in size and
comprised 35 million transactions (by its 10th birthday, it may likely be 100 times larger). A
fresh installation of a full payment verification Bitcoin wallet program can take several days
(depending on bandwidth) to download the entire blockchain. Obtaining the blockchain
requires connecting to other full nodes and checking to determine whose blockchain has the
greatest proof-of-work total (by definition, this is assumed to be the consensus blockchain). For
laptops and other home devices, running a full payment verification wallet may be merely
inconvenient, but for some mobile phones, it is simply impossible. Fortunately, there is a way to
make only a slight compromise in trust but in return achieve more computationally efficient
transaction verification.
SPV wallets, also called thin or lightweight wallets, cannot check whether transactions are
valid; rather, they can check whether full nodes, specifically miners, have validated them. The
goal of a thin wallet is to check that a transaction has been verified by miners and included in

some block in the blockchain. It’s similar to having an accountant balance your checkbook
instead doing it yourself. This method works reliably as long as miners, who are adding blocks
to the blockchain, act honestly and allow only valid transactions to be included (which is a safe
assumption as long as no individual miner is in control of more than 51 percent of the hashing
power of the network). But without a copy of the blockchain, how does a thin wallet know
whether or not a received transaction was included in a block? The transaction can claim it
was included in block #24371 on the blockchain, for example, but how would you know
whether the claim was true or false? One strategy would be for your wallet program to connect
to several full nodes and ask to download block #24371 along with all of its other transactions.
Then your wallet can comb through the transactions in that block and identify whether the
transaction under investigation is present. However, if your SPV wallet program has to check
several hundred transactions a day and each time you need to download an entire block (with
all of its transactions), from an efficiency standpoint, this strategy is hardly better than just
downloading the entire blockchain.
The ingenuity of SPV rests on its ability to verify, through the magic of hash functions, that a
transaction was included in a block without looking at any of the block’s transactions. To do so,
SPV wallets need to download the headers of every block in the blockchain. Recall from
Chapter 8 that each block in the blockchain contains two parts, a long list of transactions and a
short summary of the block’s contents (the header). Importantly, the header contains a hash of
all the transactions within that block, structured in such a way that any Bitcoin wallet program
can easily check whether a transaction belongs to a particular block by considering its hash
value. This hash structure is called a Merkle tree.3 Using this Merkle tree design, thin wallets
can safely confirm that transactions they receive have been included in the blockchain without
downloading the full blockchain. Downloading just the block headers requires only a fraction of
the memory that’s needed for the entire blockchain; therefore, SPV wallets can easily run on
your smartphone and other inexpensive mobile devices.
A Bitcoin wallet app that uses SPV can also offer many but not all of the same security
guarantees as a full wallet.
Being able to run a resource-hungry Bitcoin wallet on a smartphone is an impressive feat of
engineering. SPV wallets use advanced computer science technology but make a few
compromises in flexibility. Table 9-1 summarizes how we’d rate SPV wallets and compare
them to full wallets using a variety of factors.
Table 9-1: Rating SPV Wallets vs. Full Wallets
Factor Simplified payment

verification wallets
Full payment
verification wallets

Speediness of initial installation and
network synchronization
Speed of new payments (zero
confirmation transaction)
Security for new payments
Security for confirmed payments
Overall security
Efficiency of storage use
Ability to inspect arbitrary Bitcoin
addresses
Ability to import private keys
Effect on overall health of Bitcoin
network

Let’s examine each feature in this table in more depth:
Speediness of initial installation and network synchronization
After initial installation, SPV wallets and full wallets need to download blockchain data from
other nodes on the Bitcoin network. However, an SPV wallet only has to download block
headers and some data specific to Bitcoin addresses it’s responsible for maintaining. Hence, an
SPV wallet can synchronize and be ready for use in less than an hour, whereas full wallets might
take many hours to initialize.

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#ch08
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote66
ch09table1
ch09table1

Speed of new payments
For SPV wallets and full wallets, new (but still unconfirmed) transactions made on the network
are quickly broadcast to all peers. If someone sends money to an address managed by your
wallet, you’ll be notified within a few seconds, no matter your wallet type.
Security for new payments
A full wallet that can access a complete blockchain can quickly validate new transactions,
ensuring that it is sending money from a valid and adequately funded source address. An SPV
wallet cannot do this and instead relies on its network peers to ensure its transactions are legit.
In theory, if someone sends you a payment and is in cahoots with one of the (supposedly)
random peers your SPV wallet interacts with, this sender could send you fraudulent payments.
A full wallet is immune from this type of attack.
Security of confirmed payments
Even if a transaction is 100 percent valid, just because a transaction is broadcast doesn’t mean
it will make it into the blockchain, especially if the spender creates an additional transaction
that attempts to doublespend the money to another address. For this reason, it’s best to wait
for three to six block confirmations on larger purchases. SPV and full wallets can validate
transactions by tracking these confirmations. While a full wallet can directly prove that a
transaction that has been mined into a new block is truly valid (i.e., sent from a fully funded
address), an SPV wallet cannot. Therefore, if a miner includes a bad transaction in a new block,
an SPV wallet could still be fooled. But it is very unlikely a miner would ever do this: Mining
blocks is extremely costly, and by design a block with bad transactions would be immediately
abandoned by any other full nodes on the network that take the time to perform validation on
the block. As a result, a miner would never receive a reward for mining a block containing bad
transactions. Hence, a confirmed payment sent to an SPV wallet is quite secure, although the
security of a full wallet is still the gold standard.
Overall security
All in all, a properly programmed SPV Bitcoin wallet can offer security for your bitcoins and
bitcoin payments that is quite good, though it can never match the security guarantees of a full
wallet. If you’re running an SPV wallet on your smartphone and receive a payment, you can rest
assured that once this payment has been confirmed by a few blocks, the balance and other
information reported in the SPV wallet can be trusted to be accurate.
Efficiency of storage use
As discussed earlier, storing the blockchain of a full wallet consumes many gigabytes of disk
space. However, an SPV wallet requires less than a gigabyte of storage and can run efficiently
on a modern smartphone.
Ability to inspect arbitrary Bitcoin addresses
Because a full blockchain contains the balances of all Bitcoin addresses in existence, a full wallet
lets you easily check balances and other details of any address, even those you don’t own (if
the full wallet programmers choose to include this ability in their app). An SPV wallet is
completely ignorant of all Bitcoin addresses other than those it is directly responsible for and is
unable to provide such information.
Ability to import private keys
If you want to import an existing Bitcoin address (and associated private key) into a full wallet,
the full wallet is able to incorporate the address and the funds linked to it within seconds. An
SPV wallet has no easy way to import such a key, because it has no information about any
historical transactions involving this address. Therefore, if you import a private key into an SPV
wallet (given there is an option to do this), you can expect to wait several minutes as the wallet
queries its peers for historical data involving the new address.
Effect on overall health of Bitcoin network
For the Bitcoin network to remain healthy, all the participating nodes need to cooperate in
validating new transactions and blocks. As discussed previously, SPV wallets are limited in terms
of validation capability. Also, SPV wallets usually don’t accept incoming TCP connections and
may not participate in broadcasting third-party transactions/blocks to peers. For this reason,
having a large percentage of SPV nodes on the Bitcoin network could potentially have
repercussions on the overall health of the network. At this time, there is little evidence of any
negative effects. But as the blockchain grows year after year, the percentage of nodes that
can’t perform full validation may increase, and problems may arise. Nonetheless, improving

storage capacity and faster network speeds will likely continue to allow people to cope with the
growing blockchain, and definite benefits will be gained by running a full node. Hopefully, this
will give many people incentives to run full nodes in the years to come to sustain the health of
the network indefinitely.
In short, SPV wallets have some limitations, but as long as you understand these limitations,
these wallets are suitable for storing your money. However, if you are storing large amounts of
Bitcoin, it may be wiser to use a full wallet, given the additional security guarantees. But for
storing some spending cash on your smartphone, SPV wallets are an ideal solution.
Other Common (and Not So Common) Bitcoin Wallet Features
In addition to features dictated by the underlying design of different wallet architectures, some
Bitcoin wallets have a variety of other basic and advanced features. Some basic features you
should expect to see include password protection, the ability to make backups of your private
keys, QR code scanning and generation, and the ability to generate and import paper wallets.4
A somewhat advanced feature that is common to many Bitcoin wallets is the ability to sign
messages with your private key. Recall that Chapter 7 discussed how digital signatures are
used to sign Bitcoin transactions with your private key. The same digital signatures can be used
to sign arbitrary messages, and many Bitcoin wallets make this an easy-to-use feature because
it is useful when you need to prove you are the owner of a particular Bitcoin address (for
example, if you are trying to get preapproved for a loan from a bank and it wants you to prove
you have bitcoins as collateral).5
Other advanced features you might see in some Bitcoin wallet programs include multi-signature
transactions, in which multiple private keys are required to spend bitcoins from one Bitcoin
address, and a feature called coin control, which provides fine-grained control over which
bitcoins you use for making any specific purchase (see “An Advanced Bitcoin Wallet Feature:
Coin Control” below). The number of advanced features available is too extensive to list here
(and the number of features keeps increasing), but now you understand why so many Bitcoin
wallet programs exist!

AN ADVANCED BITCOIN WALLET FEATURE: COIN CONTROL
Imagine you have three nickels in your pocket, and you walk into the Very-Cheap-Candy-Store
to buy a chocolate that costs a nickel. Your nickels are fungible, meaning that each of your
three nickels is equally valuable and useful as payment for the chocolate. Well, at least you
think they are. But perhaps you didn’t notice that each nickel has a different image engraved on
the reverse side, and one of them is a 1913 Liberty Head V nickel (of which only five exist in the
world and are valued at about $4 million each). When you pay for your chocolate, you use the
nickel with the rare image, and the store owner recognizes it! To your alarm, he calls the police
because the nickel you gave him once belonged to his friend (Warren Buffet? Richard Branson?)
and it was stolen. After several hours of interrogation, you convince the police that you had no
idea you were carrying a stolen nickel and explain that you’ve learned a valuable lesson about
choosing your coins carefully before paying with them. This short tale is the basis for the coin
control feature offered by some Bitcoin wallets.
If you have received bitcoins from multiple sources to the same Bitcoin address, then the
bitcoins from each transaction can be distinguished from each other (each group of bitcoins is
called an unspent output). With a Bitcoin wallet that supports coin control, when you send a
payment from your wallet, you can choose to spend only the bitcoins you received from your
employer, rather than the ones your friend gave you, even if the bitcoins are all sitting at the
same address.
In most cases, it doesn’t matter which coins you use to pay for something. However, in some
situations you are legally obligated to choose a specific funding source for an expense. For
instance, in most places in the United States, a landlord is required to place a tenant’s security
deposit in a separate bank account to ensure the money is not mishandled and can be spent
only in appropriate ways. Someone may have similar obligations when managing Bitcoin funds
for other people.
Additionally, because all Bitcoin blockchain information is public, if you receive and send
payments from the same pool of Bitcoin addresses that comprise a wallet, your income source
and purchases can theoretically be associated surreptitiously. Through the use of coin control,
you can choose payment addresses that prevent this association, giving you more privacy.

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote67
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote68

Future Wallets
Future Bitcoin wallet programs may offer such features as automatic bill payments, cash flow
statements, tax reporting, and tighter integration with traditional financial accounting software.
Also, continued technical innovation could enable wallets to execute more complicated
transactions, such as escrow transactions, or sending bitcoins to accounts that can’t be spent
until some external criterion is met (such as the year being greater than 2020). No doubt we
will see many of these exciting features in Bitcoin wallets in the next few years.
Which Wallet Is Right for You?
Considering the preceding discussions, which Bitcoin wallet should you use? Well, keep in mind
that you can use more than one. In fact, if two different Bitcoin wallets use the same private
key, they can both spend the same bitcoins. You can have a lightweight, no-blockchain wallet
on your mobile phone and a more sophisticated Bitcoin wallet on your home server, both
managing one pool of bitcoins.
However, in practice many users keep distinct pools of Bitcoin in separate Bitcoin wallets (i.e.,
each wallet has its own set of private keys), because it’s easy to move bitcoins between them.
A common setup that works well for personal use is to store a small number of bitcoins in a
lightweight Bitcoin wallet on your phone or laptop, which travels with you, and store your
savings in a separate Bitcoin wallet that is more secure (with such features as cold storage and
offline transaction signing). In short, keep a few bitcoins in your hot wallet and save the rest in
your cold wallet, which is similar to carrying a wallet with spending cash in your pocket and
keeping your life savings in a bank account (except Bitcoin lets you be your own secure bank).
Additional Wallet Considerations
So far we’ve discussed Bitcoin wallets in terms of their functionality, features, and underlying
design, but other considerations should be taken into account as well: Is the Bitcoin wallet open
source? Has it received a security audit? Does it have a large user base? Because Bitcoin wallets
manage money, it’s imperative that you be more careful when choosing a wallet than when
choosing other apps, such as games or office software. Be sure to research the Bitcoin wallet
program you plan to use before storing significant amounts of money in it. Check with friends
or colleagues to see whether they have had good experiences with the program.
Additionally, consider merchant integration. If you want to use bitcoins for transactions at
certain stores or restaurants, check whether your Bitcoin wallet software is compatible with
their point-of-sale systems. Any wallet app or program with a substantial user base will
probably work well, but if you want to be the guinea pig for the latest and greatest Bitcoin
wallet, expect to run into a few hiccups when you’re trying to make a purchase.
Fortunately, it’s easy to try many different wallets and fund them with a few cents of bitcoins to
determine how they work and what features they offer. We suggest you experiment with
several before you decide on your favorite.

10
BITCOIN 2030

So let’s suppose Bitcoin is a runaway success. What would the world look like in 2030?
In the year 2030, 20 million bitcoins are in circulation; all but 1 million of the 21 million
maximum have been mined.
Unfortunately, the future didn’t work out well for Crowley: He didn’t pay close attention to
Chapter 3 and lost all his bitcoins in the infamous WhatsMyInstaSnapAppBook.com hack in
2019. Consequently, he’s spending his days as a real estate agent and driving semitrucks cross
country on the weekends for a living.
So exactly what would 20 million bitcoins look like? Well, unbeknownst to Crowley, if the 20
million bitcoins were each the size of a penny and were stacked as tightly as mathematically
possible, they would almost exactly fill the inside of Crowley’s US standard-sized, 53-foot
semitrailer!

What Will a Bitcoin Be Worth in 2030?
Most likely, bitcoins will be worth zero in the year 2030: Despite the currency’s early
extraordinary success, 2030 is just too far in the future and too many events could trigger its
demise. However, we can predict what the value of a bitcoin would be if Bitcoin achieved
mainstream adoption.
For the rest of this chapter, let’s imagine a world in which 1 billion people use bitcoins regularly.
That number doesn’t include everyone, because traditional currencies will still be used as well.
So how many bitcoins might a typical Bitcoin user own in this future world?
Given that 20 million bitcoins would be in use in 2030, on average each person would own 0.02
bitcoins. Of course, wealth is never evenly distributed, and in all likelihood the top 1 percent
would own more than 50 percent of the bitcoins (unfortunately, Bitcoin is unlikely to solve this
problem on its own). Therefore, the typical Joe would own approximately 0.01 bitcoins, most

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#ch03

likely referred to at this time as 10,000 microbitcoins.
Referring back to the example of a semitrailer of penny-sized bitcoins, the typical Joe’s savings
would consist of a fragment of a penny, about the size of a grain of sand a cubic millimeter in
size.

As discussed in Chapter 6, the role that Bitcoin could fulfill that would produce the highest
possible value per coin is as a store of value, in which case the typical Joe might store $1,250 of
his savings in Bitcoin. If this extreme scenario were true, calculating the value of a single coin
would be $1,250 divided by 0.01, or a ludicrous $125,000 per coin.
Bitcoin Mining in 2030
Using bitcoins to buy morning coffee, lunch, car fuel, and some online products, an average
user might make 10 transactions a day.1 A billion people making 10 transactions each per day is
a substantial number of transactions! In fact, the number would be just over 100,000
transactions per second, which is 25–50 times more than the number VISA processes today. If
transaction fees remained low (a must if many people adopt the currency)—let’s say a penny
each—the result would be $100 million dollars a day in transaction fees!
Although mining rewards in 2030 will be less than two bitcoins per block (based on the current
schedule), if bitcoins have appreciated significantly in the interim, the mining rewards might
still be considerable.
But most transactions might be off-chain transactions. (Off-chain transactions are Bitcoin
transactions that are not handled by the blockchain but are instead handled by the ledgers
managed by Bitcoin wallet vendors, in order to save on transaction fees for smaller payments.)
Consequently, those 10 billion transactions per day may be only 1 million transactions per day
as recorded on the blockchain. However, no matter how they are processed and reconciled,
any payment system used by a billion people will generate many billions of transactions daily.
Mining would be very competitive, and the profit margins would be extremely slim. Only those
with the most energy-efficient miners and cheapest electric power could stay in business.
Assuming that the most efficient mining technology requires 0.1 J/GH, that electricity costs
$0.10 per kWh, and that $100,000,000 a day in transaction fees is generated, the break-even
hash rate would total more than 500 exahashes/s (500,000 PH/s)! Even assuming that mining
technology is 100 times more computationally compact than it is currently, the amount of ASIC
mining hardware required to achieve that level of mining power would fill around 5,000 small
apartment buildings.

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#ch06
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote69

At a hash rate of more than 500 EH/s and an energy efficiency of 0.1 J/GH, a much greater
amount of electric power will be needed to devote to mining. Over 50 GW would be used for
Bitcoin mining, which is a bit less than 5 percent of the power produced by the United States
today and about 0.3 percent of the global power output. Of course, if the expense of electricity
increases, the network hash rate would drop. Bitcoin mining doesn’t require a specific hash rate
to function; however, the cheaper the electricity, the more Bitcoin miners will operate.
At this point, we’ve had fun speculating about the price of a bitcoin in a world dominated by
this currency and discussing the infrastructure that would likely evolve around it. But what
might life be like for an average bit-coiner in the year 2030?
A Day in the Life of a Bitcoiner in 2030
Let’s follow Crowley as his day unfolds. It all starts when Crowley wakes up in the morning.
Crowley wears his sleep-optimizing bracelet at night, which uploads his pre-waking vital signs
anonymously to the Internet. Using this information, machine-learning systems across the
world use bitcoins to bid on the time Crowley’s alarm clock should go off, given his physical
condition and sleep/wake cycle. The winning bid is the one that lets Crowley sleep the longest.

Because Crowley likes to take long, hot showers in the morning, he used to run out of hot
water. But recently, a resident in his apartment building installed an industrial-grade hot water
heater and is now selling hot water to other tenants to help with the cost. A chip in Crowley’s
hot water faucet automatically dispenses bitcoins directly to a chip in the hot water heater. As
Crowley turns the shower knob clockwise, more bitcoins are dispensed and more hot water

streams from the shower head.

As Crowley leaves his house, he beams a few satoshis from his wristwatch to one of the robotic
lawnmowers mowing his lawn. A lawnmower repair shop down the street builds these mowers
and provides them for free. Each lawnmower collects its own earnings and uses the bitcoins to
pay programmers on the Internet to improve its AI algorithms so it can earn more. In addition,
the mowers visit the lawnmower repair shop to get upgrades and pay there with their bitcoin
earnings as well.

Today, Crowley misses his bus on his way to work. Apparently, the winning alarm clock bidder
failed to detect Crowley’s hangover this morning and cut the time too close. Usually, his
bracelet would now dispense 20 satoshis to the winning bidder as a reward; however, because
the bracelet calculates that Crowley has missed his bus, it draws upon a 100 satoshi insurance
pool from an escrow account that the winning alarm-clock bidder had to set up as part of the
bidding process. As a result, the winner loses money on today’s bid (the programmer has some
algorithm debugging to do).

With the satoshis from the escrow account, the bracelet starts an impromptu Bitcoin auction
with all nearby parked, self-driving cars to determine if any are willing to rent to Crowley. After
entering the winning car, Crowley is off to work.

Today, Crowley’s real estate client is buying a house. Ever since the 2023 Digital Real Estate
Reform Act, all houses are managed by simply tracking ownership of a single, specific satoshi
assigned to each property. This satoshi acts as a colored coin, much like a title search in 2014.
In effect, if the satoshi is handed to another person, the new person is assigned legal ownership
of the property.
In 2030, Crowley just asks his Bitcoin wallet to do a title search by tracking the ownership of the
satoshi linked to the house throughout the blockchain. Not only is this equivalent to an
exhaustive title search and guaranteed to be 100 percent accurate, but his wallet software does
this search instantaneously and for free.

WHAT IS A COLORED COIN?
One of the defining features of money is that it is fungible: If you want to buy a candy for a
nickel and you have several nickels in your pocket, you should not have to think about which
nickel to use—any of them is fit for this job. However, since the Bitcoin blockchain is public and
we can therefore track the history of a single coin across time, it is possible to create a different
type of money that is not fungible—a type of money where different coins may be tagged with
different sorts of “colors.”
For instance, suppose you are setting up a concert in a theater that can seat only 400 people.
One way to make sure no more than 400 people show up on the day of the concert would be to
hand out 400 milibits of Bitcoin to your 400 closest friends and then simply tell all of those
people, “Please come to my show! However, if you can’t make it to the show that day, feel free
to trade or sell these milibits to anybody. They’re yours to use as you see fit!”
Then, on the day of the concert, you would ask anyone who shows up to send one of these 400
milibits back to you. By analyzing the blockchain, you could theoretically follow each milibit
through the past and verify each was among the 400 you initially sent out. There is nothing
special about these original 400 milibits, other than the fact that you decided to arbitrarily give
these 400 a special extra value (entry into a concert). This is referred to as coloring these
coins. The benefits of this process would be (1) that no more than 400 people can show up to
your concert with valid tickets and (2) your friends would have complete freedom to do
whatever they wanted with the coins they were given. This same system could also be used to
track ownership of more significant assets; for instance, to determine who owns the title on a
house.
Of course, in practice it would be painful to track each of these coins in the blockchain yourself.
However, software exists to automate the process of coloring and tracking bitcoins in this way.
The most established protocol and tools for doing this share the name of “Colored Coins” and
are available at http://coloredcoins.org/.
To complete the sale of the house, the buyer and seller simply enter a multi-signature
transaction: In a single transaction, the buyer sends 150 microbits of bitcoins (the cost of the
house) to the seller’s address, and the seller sends the single-colored satoshi to the buyer. By
using a single transaction, no sale can happen until both parties have signed the transaction
with their private key. The transaction also contains a 1 percent commission that is sent to the
real estate agents’ addresses.

Because the blockchain was used to track property ownership, the entire title insurance and
closing costs for the house (sans agent commission) is just the transaction fee, which may cost
less than a penny.
After his workday is done, Crowley sends some money to his mom, who is a Nile crocodile. Her
village, like every village in Burundi in the year 2030, has a Bitcoin booth that converts bitcoins
to Burundian francs for a mere 0.5 percent commission. Of course, anyone can buy most items
directly using bitcoins anywhere in the world nowadays, so that commission is not a necessary
expense.
Instead of catching the bus, Crowley decides to get some exercise on this beautiful day and get
dinner on his walk home. Unbeknownst to Crowley, a woman named Sofia who lives on the
street he’s walking down has just made a big salad for her family and realizes she’s made too

http://coloredcoins.org/

much and will have leftovers.

For this reason, she takes a picture of the leftover salad and uploads it to a food-sharing
website. On that site, reviewers are paid with bitcoins to supply estimates of the tastiness of
this salad. Within a few seconds, Crowley’s phone rings because earlier he had put in a request
for a meal of at least an 8 out of 10 rating in tastiness for no more than 15 satoshis that he
could obtain on his way home, and Sofia’s salad meets his request!

When Crowley rings Sofia’s doorbell, an NFC chip in the doorbell communicates with Crowley’s
wristwatch to establish a contract for the dinner salad: Automatically, the doorbell sends
Crowley’s wristwatch a bill for 15 satoshis for entry into Sofia’s impromptu restaurant.
How does Sofia know she can trust Crowley in her house? Crowley subscribes to an anonymous
rating service, which for a 1 satoshi fee guarantees to Sofia that Crowley’s trustworthiness
score is 9.5 out of 10. This rating service is built into the Bitcoin blockchain in the form of a
script. Users pay small fees to be part of the rating service, and the rating service (a computer
program) uses these fees to pay for its online ads. In effect, it is a financial entity without an
owner, living in cyberspace and paying for its own resources. This type of entity, called a
distributed autonomous corporation, is made possible by blockchain technology.
After a long day at work, finally at home, Crowley relaxes in his recliner in front of the tube. In
the middle of his favorite movie (Harry Potter and the Forked Blockchain), a pizza commercial
appears. “Darn!” he exclaims. “That was a healthy salad I had for dinner today, but I could really
go for a pizza chaser.”

The reason this commercial suddenly interrupts Crowley’s movie is not coincidental. Just at that
moment, a pizza van driving by his house enters an automatic Bitcoin ad auction with Crowley’s
TV, earning the right to show its pizza commercial!

All Crowley has to do is simply open his mouth: In response, the gesture-recognition system in
Crowley’s TV automatically sends 8 satoshis to the pizza van.

In short order, the pizza van places a slice of pizza on a conveyor belt that extends from
Crowley’s house.

Within seconds, a robotic arm reaches out from the base of Crowley’s recliner, grabs the slice
of pizza from the conveyor belt, and stuffs it into Crowley’s mouth.

You might have thought that a world built entirely on decentralized Bitcoin transactions would
be a horrific dystopia. But after reading the awesome description of a day in the life of a typical
bitcoiner in the year 2030, where everything operates via Bitcoin, we’re sure your worries have
been conclusively put to rest.
The Bitcoin End Game
In 1687, Isaac Newton published his Principia, arguably the single greatest piece of intellectual
writing in the history of mankind. This book made Newton famous because for the first time in
history, someone had discovered simple mathematical formulas that could precisely describe
the motion of the planets and other objects under the influence of gravity.
As great as this achievement was, the Principia had hidden within it another idea of even
greater significance: the idea of infinitesimal calculus.2 Most of the technology on which
modern society depends—computers, cell phones, and even atom bombs—could have existed
in a world without a theory of gravitation; however, it is highly unlikely this technology could
have existed in a world without calculus.
In 17th century Europe, not everyone could appreciate the value of calculus. Newton had
crafted this very abstract innovation almost solely as a tool to solve the far more romantic and
poetic problem of explaining the motions of the planets for the first time.
Certainly, it is far too early to estimate where and whether Satoshi Nakamoto’s Bitcoin
whitepaper will appear in the annals of important scientific publications. But one fact is clear: In
the same way that Newton had to first discover calculus to explain the motions of the stars, so
Satoshi had to first discover the idea of a distributed anonymous ledger, the blockchain, to
invent the idealistic notion of a fully distributed cryptocurrency.
However, unlike calculus and the laws of gravitation, the concepts of a blockchain and
cryptocurrency are inextricably linked; they are yin and yang. A distributed form of money
simply cannot exist without the security provided to it by the blockchain. Similarly, a blockchain
cannot be created without giving people incentives to create it, and the only possible incentive
that could work is a distributed form of money!

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote70

So therein lies the genius of Satoshi Nakamoto: A person who was able to imagine two distinct
technologies that on their own were clearly impossible and impractical. Sometime in the mid-
naughts when Satoshi formulated his original whitepaper, for the first time in the world a
person was able to clearly realize that although both technologies were impossible on their
own, if you combine the two ideas into one enmeshed system, they become not only possible,
but actually practical!
The true future of Bitcoin is evident: The technology of the distributed asset ledger combined
with an incentive-producing currency is certain to remain with us for all time.3 It is a
mechanism that allows for great gains in efficiency in many situations in which trust previously
had to be delegated to a central arbiter. Although there is no question that governments and
central authorities will continue to exist and play a meaningful role in the world’s future, much
of the current work performed by these governments and other authorities is also needlessly
repetitive and mundane.
Just as robots have helped the world reduce menial physical labor, so cryptocurrency
technology now gives us the tools to automate the menial labor of bureaucracy. Optimistically,
the entirety of humanity will benefit as a result.

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote71

A
HELLO MONEY! A SIMPLE JAVASCRIPT PROGRAM

One factor that makes Bitcoin so exciting is that anyone can write computer programs to link
directly into the Bitcoin network and perform financial transactions. This appendix explains how
to write a simple JavaScript program that watches a wallet and indicates when bitcoins have
been sent to the wallet. In Appendix B, we’ll create some more advanced programs in Java that
expand on this idea.
The Meaning of “Easy”
Writing programs that manipulate money in Bitcoin is easy. However, as we walk through this
process, it might not seem very easy to you.
But imagine, instead, if we built our app or service using a traditional e-commerce system.
Roughly, here’s what those steps would look like:
1. Incorporate your business to receive a DUNS1 number.
2. Get a corporate account at your bank.
3. Have your account verified by a merchant services provider (Intuit, PayPal, Stripe, Apple,
etc.).
4. Set up an account via the provider with your DUNS number to get access keys.
5. Acquire proprietary library software from the provider (you’ll probably need to update this
library regularly to maintain your software).
6. Redirect your customers to a special provider to authorize payments.
7. Write your code.
8. Have your finished app reviewed by the payment provider.
Here is the main step needed to get a Bitcoin-based, e-commerce system up and running:
1. Write your code.
Having to complete just this one task is what we mean when we use the term easy when
programming with Bitcoin.
Three Ways to Write Bitcoin Software
To write Bitcoin-enabled software, you can use three different approaches:
1. Use a merchant service.
2. Connect to a local Bitcoin wallet program (typically the original Bitcoin wallet application
based on Satoshi’s initial code, named bitcoind).
3. Create a program that inserts itself directly into the Bitcoin network.
Using approach #1, you would connect to a web API over the Internet. That API would be
supplied by a third-party company to manage your bitcoins. Companies that supply these APIs
for sending and receiving bitcoins are typically called merchant services.
For example, if your website sells widgets and you want people to buy your widgets with
bitcoins, using a merchant service may be a simple, nofuss way to get your website working
quickly. An additional benefit of a merchant service is that it may also offer services to
automatically convert Bitcoin to/from other currencies as part of a transaction. Many
companies supply these APIs, and BitPay is a common choice. But you can find a more
extensive list of companies on the official Bitcoin foundation website.2
However, this approach has some drawbacks. First, these vendor APIs arguably go against the
spirit of Bitcoin, because using an API middleman makes you beholden to an external party;
serious Bitcoiners prefer to retain 100 percent control over their money. Second, these APIs are
mostly designed only for common use cases, so they don’t allow the flexibility and innovative
app development that we want to foster with this book. Third, the design of these APIs tends to
change frequently, making it difficult to provide you with current information. For these
reasons, we won’t spend much time discussing vendor APIs in this book.
Approach #2 involves connecting to a local Bitcoin wallet and basically running the wallet on
autopilot. Two of the Bitcoin wallet programs based on Satoshi’s original code—Bitcoin Core
and bitcoind—can be remote-controlled using a special protocol called JSON-RPC, as we will
discuss shortly. Because these two programs are the gold standard in Bitcoin wallets, it is very
enticing to utilize them for custom programs. Programs written to automate Bitcoin Core and
bitcoind are easy to understand, and libraries exist in all popular programming languages,

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote72
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote73

simplifying their use. You can use this approach in JavaScript, Ruby, PHP, Python, and many
other languages. Unfortunately, the main drawback of using a local Bitcoin wallet program and
controlling it from your own code is that this process often clunky and inefficient, as you’ll see
in the first programming example.
NOTE
Bitcoin Core and bitcoind share the same code. This common code is called the Bitcoin
reference client, or just Bitcoin. It was the first implementation of the Bitcoin protocol and
eventually was split into two variants: Bitcoin Core has a friendly graphical interface (UI), and
bitcoind is a more stripped-down version with a text-based interface.
Approach #3 involves going right to the metal and inserting your Bitcoin-enabled program
directly into the Bitcoin network. You can do this in languages such as Java, C++, or Go or any
language that has a fully implemented Bitcoin client library available. This approach is more
robust and less resource-intensive than approach #2, but it is more technically complex.
However, if you’re a programmer who believes in the Bitcoin ethos, being able to write an app
that is a real first-class citizen in the Bitcoin network—a true Bitcoin node participating in the
Bitcoin system—is motivating. The reason is that absolutely no limitations restrict what your
app can do (as long as your app obeys the rules of the network.) In Appendix B, we’ll write
some programs that use this approach.
General Security Notes on Bitcoin Programming
An important disclaimer we need to mention here is that in this appendix, we’ll write programs
that send and receive only a few pennies. The techniques and example discussed are useful for
learning the basic concepts of Bitcoin programming but are in no way appropriate for writing
programs that manipulate substantial sums of money. If you plan on writing serious Bitcoin
applications, you’ll need to do the following:
1. Learn the basic concepts from the sample programs in this chapter.
2. Use this knowledge to study and understand the underlying source code for the Bitcoin
libraries used in this chapter.
3. Follow the forums used by the developers and other library users to stay current with any
security risks involved when using these libraries.
Most important, be aware that we’re using community-maintained source code in our
examples; if a clever black hat hacker3 manages to insert some rogue code into the official
library repositories, he or she can steal all your money. Even if you understand the library code
perfectly, you run the risk of jeopardizing the safety of your money. For example, as you’re
downloading this library code from the Internet, a black hat hacker has many opportunities to
perform a man-in-the-middle attack4 and insert rogue code into a doctored version of the
library that is incorporated into your program. As a result, the hacker can steal all your money.
Additionally, as mentioned in earlier chapters, hackers can steal your bitcoins in many other
ways that aren’t specific to Bitcoin programming. In a few years, if the current popularity of
Bitcoin continues, we suspect most computer viruses will include code that immediately
empties any Bitcoin wallets they find.
The bottom line is that you need to understand the grave risks your money might be exposed
to if you plan on creating more advanced Bitcoin programs; you’ll be able to safely protect your
money only if you have a comprehensive and firm understanding of Bitcoin technology that
goes beyond the introduction we give in this chapter. Please proceed with caution!
Some Upbeat Notes on Bitcoin Security
Now that you’ve endured some fire and brimstone to prevent you from losing money, we’ll
point out a few facts that should make you feel confident about Bitcoin security:
• The core Bitcoin network has so far maintained a record of almost perfect security. Most of
the security risks involved in using bitcoins are due to careless acts that people executed on
their own computers and could have been avoided.
• Despite the risks we’ve discussed so far in this chapter, established programming practices
exist that mitigate all of these risks. You will be able to write secure Bitcoin software if you
study this book, follow general guidelines on secure software development, and keep up-to-
date on the latest security concerns discussed on Bitcoin development forums.
• As you are learning to write programs that use bitcoins, make sure you use a computer that
doesn’t contain Bitcoin wallets with substantial amounts of bitcoins in them. By doing so, you

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote74
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote75

can learn to write Bitcoin software and avoid any dangers: You can’t accidentally lose bitcoins
(or have them stolen) on your development machine if you store your coins elsewhere.
Writing Your First Bitcoin Program in JavaScript
By convention, the first program a programmer writes when learning a new technology is a
Hello World program: It’s the simplest program possible in that it just prints the message Hello
World! on the screen. Essentially, it indicates to the novice that your initial code seems to be
working at the outset.
However, the Bitcoin programs we need to write must perform two main tasks: receive money
and send money. In this chapter, we’ll focus solely on receiving money and write a program
called Hello Money!. In Appendix B we’ll write a Bye-Bye Money program to send money.
Why Use JavaScript?
JavaScript is arguably the most well-known programming language in use today, because most
developers who build software for the Web must learn it sooner or later (it is the only language
that can natively run in a standard web browser). However, the JavaScript code we create will
not run in a web browser: This is because web browsers have strong protections called cross-
domain restrictions that shield them against communicating with external programs and
websites. These restrictions limit what you can do with JavaScript within a web browser,
making it difficult to interact with any external wallets (which is no surprise, because you
wouldn’t want your wallet emptied by visiting a malicious website).
However, currently you can also run JavaScript on a server, as is commonly done using the
Node.js library. When run on a server, no such restrictions apply, and we can write simple
programs that run in a console and can interact with Bitcoin Core and bitcoind.
Bitcoin Core vs. Bitcoind
As discussed earlier, the programming techniques described in this chapter will work with
either of the wallet apps, Bitcoin Core or bitcoind. The only substantive difference between the
two programs is that Bitcoin Core has a graphical UI; basically, it is just bitcoind with a frontend
attached to it. Because of the friendliness of the graphical UI, we’ll use Bitcoin Core for the
example in this chapter. However, bitcoind is slightly less resource-intensive and can more
easily run on computer servers via a terminal console. Consequently, it’s best for you to use
bitcoind if you actually deploy a finished program that uses the concepts in this chapter.
Preparing Your Machine for JavaScript Bitcoin Programming
You’ll need a few tools to ready your machine before you begin programming, so let’s get them
now. The instructions provided here assume a Windows development environment; skip ahead
to “For Mac Hackers” on page 219 or “For Linux Folks” on page 219 if you’re using either of
those platforms.
Installing Node.js
You first need to download an installer for Node.js from the http://nodejs.org/ website. When
you run the installer for Node.js, it will also install the Node Package Manager (npm) that we’ll
rely on next.
Installing node-bitcoin
Now you’ll need a JavaScript library that connects to Bitcoin Core and bitcoind. We’ll use the
node-bitcoin library. To install node-bitcoin, go to a command prompt and enter npm
install bitcoin. This command invokes the (previously installed) Node Package
Manager, which downloads everything in the library in a simple step.
Starting Bitcoin Core
If you haven’t already, download Bitcoin Core from its official website at
http://bitcoin.org/en/download.
Next, you need to fire up Bitcoin Core in server mode. The wallet app will open an extra socket
that we’ll use to connect to the wallet from our JavaScript program. To do this on Mac and
Linux machines, go to the Bitcoin Core installation directory from the console and run
./Bitcoin-Qt -server. On Windows machines, open a command prompt, go to the
C:\Program Files (x86)\Bitcoin directory, and enter bitcoin-qt.exe -server.
The first time you run Bitcoin Core in server mode, it will ask you to create a file named
bitcoin.conf in a specific location and add a user ID and password to this file. Follow the
directions as suggested because we’ll use the userid and password shortly. Then, restart Bitcoin

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
ch00leve1sec147
ch00leve1sec147
ch00leve1sec147
page_219
page_219
ch00leve1sec148
ch00leve1sec148
ch00leve1sec148
page_219
page_219
http://nodejs.org/
http://bitcoin.org/en/download

Core.
If you already have Bitcoin Core (previously called Bitcoin-Qt) installed but are following this
tutorial for the first time, then you will need to locate your previously created bitcoin.conf file.
For Windows users you might want to look in
C:\Users\<username>\AppData\Roaming\Bitcoin\bitcoin.conf. For Mac users, try
/Users/<username>/Library/ApplicationSupport/Bitcoin/bitcoin.conf. For Linux users, try
/home/<username>/ .bicoin/bitcoin.conf.
NOTE
Gotcha for Windows users: If you try to create the bitcoin.conf file with Windows Notepad, be
aware that Notepad will (oh so helpfully) tack on a .txt extension, which Windows will also (oh
so helpfully) keep completely hidden from you for your own protection (a prime example of why
most hackers these days try to avoid using Windows). To circumvent this problem, put quotes
around the name bitcoin.conf when you enter it into the Save As dialog in Notepad.
At this point, as is usual for a Bitcoin wallet, Bitcoin Core will take several hours downloading
the blockchain before it’s ready for the next steps—a perfect time for an extended lunch break!
For Mac Hackers
If you’re using a Mac and are comfortable using a terminal, you can run specific commands to
automatically search for, download, and install the required programs.
On Mac, download homebrew, a command-line tool that will handle the entire process for you:
Get homebrew and if you haven't already
ruby -e "$(curl -fsSL
https://raw.github.com/Homebrew/homebrew/go/install)"
brew tap phinze/homebrew-cask
brew install brew-cask

Get node.js and bitcoin stuff
brew cask install bitcoin
brew install nodejs npm
npm install bitcoin

Run bitcoin-qt in server mode
~/Applications/Bitcoin-Qt.app/Contents/MacOS/./Bitcoin-Qt -
server

For Linux Folks
If you’re using flavors of Debian Linux, such as Ubuntu, you’ll just use the PPA feature to install
the libraries:
sudo add-apt-repository ppa:bitcoin/bitcoin
sudo apt-get update
sudo apt-get install nodejs npm bitcoin-qt
npm install bitcoin
bitcoin-qt -server

With a working Bitcoin Core server, we’re now ready to start programming.
Hello Money!
Okay, let’s write our first Bitcoin app. Simply type the following complete program into a file
named hellomoney.js:
var bitcoin = require("bitcoin");

var client = new bitcoin.Client({
host: 'localhost',
port: 8332,
user: 'myUsername',
pass: 'myPassword'

});

var previousBalance = 0;

function mainLoop() {
client.getBalance('*', 0, function (err, balance) {

if (err) {
console.log(err);

} else if (balance > previousBalance) {
console.log("Hello Money! New balance: " +

balance);
previousBalance = balance;

} else {
console.log("Nothing's changed.");

}
});

}

setInterval(mainLoop(), 5000);

Before we start running the app, let’s analyze what the code does line by line.
Part 1: Initializing the Connection with Bitcoin Core
var bitcoin = require("bitcoin");➊

var client = new bitcoin.Client(➋
{

host: 'localhost',
port: 8332,
user: 'myUsername',➌
pass: 'myPassword'➍

});

var previousBalance = 0;➎
The first line indicates that we’re using the node-bitcoin library ➊. Next, we establish a
connection to the Bitcoin Core server that we set up ➋. Because we’ll be running the app on
the same machine that Bitcoin Core is installed on, our host is set to 'localhost'. By
default, the bitcoin server will run on port 8332.
Important: On the next two lines ➌➍, input the user ID and password that you entered into
the bitcoin.conf file. Replace the placeholders shown here with your own. Then, we create a
variable to keep track of the previous balance in our program ➎, which we start at zero.
Part 2: The Main Loop
Now we’ll write a loop that checks the balance in our wallet and reports to us when it has
changed. The basic steps follow:
1. Ask Bitcoin Core for the current balance in its wallet.
2. If the balance is higher than the previous balance, print a message, and update the previous
balance to the current balance.
3. Set a timer that completes the entire procedure again every five seconds.
The following mainLoop function carries out the preceding steps:
function mainLoop() {

client.getBalance('*', 0, function (err, balance) {➊
if (err) {

console.log(err);➋
} else if (balance > previousBalance) {➌

console.log("Hello Money! New balance: " +
balance);➍

previousBalance = balance;➎
} else {

console.log("Nothing's changed.");

}
});

}

setInterval(mainLoop, 5000);➏
First, the function asks Bitcoin Core for the balance ➊. As we do this, we create a callback
function, which reads function(err,balance) {}. A callback function is called at
some future date. In this instance, it will be called when we receive the resulting balance from
Bitcoin Core.
NOTE
If you’ve never worked with Node.js before, you may need some time to learn how to read this
type of programming idiom. The philosophy in Node.js is that whenever your program has to
wait on an external process (in this case the Bitcoin Core program), it makes you create callback
functions, as opposed to stopping the program dead as you wait for a result to arrive. This is
called asynchronous programming and enables your program to do other tasks while waiting
for data to come in.
When the balance becomes available, we first check whether an error has occurred and display
it if one has ➋. Next, we check whether the new balance is higher than the previous balance
➌. If so, we print a message ➍ and update the previous balance ➎. Finally, we create a timer
that runs every 5000 milliseconds with the setInterval function to repeatedly call
mainLoop ➏.
The Bitcoin Core JSON-RPC API
The mainLoop function operates by talking with Bitcoin Core. This talking protocol is
formatted as JSON-RPC, or JavaScript Object Notation – Remote Procedure Call. Simply put,
JSON-RPC describes a structure with which two computers (or two programs on a single
computer) can write messages to each other in a way that’s easy for computer programmers to
integrate into their code.
In our small app, we use only a single command to communicate with Bitcoin Core—the
client.getBalance function. But many more commands are available that let you
manipulate Bitcoin addresses, modify the wallet, analyze transactions, and complete most
other tasks you’d want to do in a Bitcoin program. To learn which functions are available in the
JSON-RPC interface, browse to the official API function list at
https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list.
Running the Hello Money! App
To try out our shiny new Hello Money! program, run the following command in a
console from the directory containing hellomoney.js:
> node hellomoney.js

Next, simply send 0.001 bitcoins to the wallet managed by Bitcoin Core from another wallet. To
do this, you’ll need to use one of the public addresses, which you can find by clicking Receive in
Bitcoin Core. The way we’ve written the app, it will count money that has arrived in your wallet
only if it has received a confirmation on the blockchain. (In the next section, we’ll write a
Hello Money! program that detects money immediately on arrival, without requiring
confirmations.)
Because confirmations typically take about 10 minutes, you’ll need to wait a bit before you see
the following:
> node hellomoney.js
Hello Money! New balance: 0.001

Congratulations! You’ve written a program that can watch a Bitcoin wallet and detect when
money has been sent to it. If you then send additional money, the app will create messages to
report on these new deposits as well.
Limitations of Writing Bitcoin Programs That Use JSON-RPC
By using JSON-RPC, we were able to write a program in JavaScript in no time that could report
money sent to a Bitcoin wallet. However, if you’re an experienced programmer (or have an

https://en.bitcoin.it/wiki/Original_Bitcoin_client/API_calls_list

advanced understanding of the Bitcoin protocol), you’ll identify many problems with our
example app.
One problem is that the app uses polling to detect when money has arrived. Polling constantly
checks the status of Bitcoin Core by interrogating the software every five seconds. This process
is similar to asking: “Do you have money yet? Do you have money now? What about now?” As
you might imagine, repeatedly asking the same question like this not efficient.
If you’re writing a production-quality application, it’s therefore best to write it using pushing.
Pushing involves specifying that our app is waiting for money and that it would like to be
notified when money has arrived. But because of the way our connection with Bitcoin Core is
set up, enabling pushing is rather difficult. After all, Bitcoin Core is primarily meant to be a
wallet app in which no pushing to external programs is needed. Automating Bitcoin Core with
JSON-PRC is a bit of a hack, and for this reason, we may run into limitations, such as needing to
use inefficient polling.
NOTE
In more recent versions of Bitcoin Core and bitcoind, a feature called walletNotify allows for
pushing, but the way it works is rather complicated—enough so that we recommend you avoid
using it. Instead, we would suggest you use BitcoinJ instead of Bitcoin Core for pushing, as we
will discuss in Appendix B.
Another problem with our app is that we’re just checking a crude balance amount to
determine when money was sent to our wallet. However, the Bitcoin blockchain can sometimes
trigger situations that cause the balance of a wallet to jump in ways that are unexpected and
could make our app produce incorrect results.
For instance, suppose our wallet receives some money with one confirmation, but the
blockchain suddenly forks, unconfirming the transaction that was tied to that money and
causing the wallet to suddenly lose much of the confirmed money. Then, within the same five-
second window, someone sends us more money. In this case, the balance in the wallet could
actually decrease, even though we received some new money, and the Hello Money! message
will never be triggered.
This is a very rare scenario, but if you’re writing an app that manipulates large quantities of
money, such incorrect behavior is intolerable. The solution to this problem is to use
client.listTransactions (instead of client.getBalance). Then review these
transactions to determine whether any new transactions involved sending money to the wallet
in the last five seconds, which is what our app is looking for. However, this is too complicated to
add to our simple Hello Money! program.
An additional problem is that Bitcoin Core (and bitcoind) requires large amounts of blockchain
data and computational resources to run, even though our little app doesn’t need most of this
power. Is there any way of reducing these resource requirements? As you’ll see in Appendix B,
we can do this by writing a program that runs directly on the Bitcoin network.

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#app02

B
BITCOIN PROGRAMMING WITH BITCOINJ

In Appendix A, we dabbled with JavaScript code that could perform some basic actions with a
Bitcoin wallet by automating a preexisting wallet. In this appendix, we’ll write far more
powerful programs that directly insert themselves into the Bitcoin network. As discussed
previously, Bitcoin programs written this way—meaning those that do not rely on APIs from
external companies and avoid dependencies on separate wallet programs—are usually the
smartest solution for serious Bitcoin development projects.
The Best Programming Language for Connecting to the Bitcoin Network
If you’re an experienced programmer, most likely you have a favorite programming language
you would prefer to use to write your Bitcoin programs. However, only a few mature libraries
currently exist that can connect directly to the Bitcoin network. One is the C++ reference
implementation with which all the first full clients of the Bitcoin system were written.1 Large
enterprise companies interested in supporting bitcoins should use this library. However,
working with C++ is difficult for novices.
Another mature library is written in Java and is called bitcoinJ.2 Because Java is easier to work
with than C++, it is the library we’ll use. (The bitcoinJ library can also be used easily from
languages built on top of the Java Virtual Machine, such as Scala or Clojure.)
Currently, the options for other languages are rather limited. By searching the Internet, you
will find Bitcoin libraries for other languages, such as Ruby, C#, and Python. However, most of
these libraries are either in extremely early development or simply use the more limited JSON-
RPC interface, which was discussed in Appendix A.
NOTE
Some serious attempts are being made to offer full Bitcoin client support within the Go
programming language. However, at the time of this writing, these libraries are either still in
early development (such as gocoin3) or are missing major features (such as btcd 4).
No matter which library you choose, keep in mind that you must be vigilant about security.
Essentially, when you use any of these libraries, you’ll be giving the library authors the keys to
your Bitcoin kingdom. As we warned previously, technically it would be relatively easy to
introduce rogue code into one of these libraries to steal all your money!
Installing Java, Maven, and the BitcoinJ Library
Let’s ready your computer to do Java and bitcoinJ programming. The following steps should
work on any major OS: Windows, Mac, or Linux.
Step 1: Installing Java
The Java programming language is maintained by Oracle Corporation. Your computer may
already have Java installed, but if you’ve never done Java development, your computer may
only contain the Java JRE (Java Runtime Engine), which can run Java programs but is not
adequate for developing them. Instead, you need the Java JDK (Java Development Kit). To
download the JDK, do a Google search for Java JDK. The first link (which should be a link on the
official Oracle website) should direct you to the right place to access the download.
NOTE
Linux developers: Some versions of Linux may install the OpenJDK version of Java by default. At
the time of this writing, this unofficial Java variant is missing some components that this tutorial
depends on. Instead, look online for information about installing the Oracle JDK on your version
of Linux and make it the default Java version on your system.
Step 2: Installing Maven
Maven is a packaging tool for Java. Essentially, you specify which libraries your program needs,
and Maven automatically downloads them from the Internet and makes them available to your
program. This is analogous to the Node Package Manager used in Appendix A.
You can download Maven and find instructions for installing Maven on each OS at
https://maven.apache.org/. Just follow the instructions at the main Maven website to install it
or search Google for tutorials. Because more than a million other people have had to install
Maven, if you run into installation problems, just type your problem into Google. It is very likely

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote37
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote38
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote39
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\footnote.html#footnote40
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
https://maven.apache.org/

you’ll get helpful information on how to solve your problem.
NOTE
Windows users: At the time of this writing, detailed instructions for installing Maven on
Windows are cleverly hidden at the very bottom of http://maven.apache.org/download.cgi.
Mac/Linux users: You can use your package managers here: brew install maven for Mac and
sudo apt-get install maven for Debian Linux.
To ensure Maven is properly installed, a version message should display when you type mvn
--version from a console.
For typical Java programming, we could stop here because any needed additional libraries
could be downloaded through the Maven package system. However, because we’re writing
programs that work with money, the bitcoinJ maintainers require all developers to take a few
extra precautions and install a couple of additional tools that directly relate to security issues.
Step 3: Installing Git
For security reasons, we’ll install Git, which is a popular source code management tool. But it
also offers features for securely downloading source code from online repositories that we’ll
rely on. Download Git from http://git-scm.com/.
NOTE
Once again, Mac and Linux users can use their package managers: brew install git and apt-get
install git, respectively. Do you see a pattern?
Step 4: Installing BitcoinJ
BitcoinJ is a Bitcoin library that can “talk bitcoin” and can connect directly to the Bitcoin
network. By calling functions in this library, we can send and receive bitcoins in real time.
We’ll build bitcoinJ directly from its authoritative source. Navigate to a directory from the
console where you want to install the bitcoinJ library (your Home directory would be a good
place).
NOTE
A new subdirectory will be created, so other existing files in this directory will not be affected by
this installation.
Enter the following into your console (on Windows you may need to use the special Git Bash
console that was installed when you installed Git):
> git clone https://github.com/bitcoinj/bitcoinj.git ➊
> cd bitcoinj
> git checkout cbbb1a2 ➋
> mvn install ➌

The first line downloads the bitcoinJ code from the authoritative website ➊. Then, we use git
to switch to an older version of this library using the git checkout command ➋. During
this tutorial, this command will shield us from any problems that might be caused by newer
versions of the library. However, when you’ve completed the tutorials, you can switch to the
newest version of bitcoinJ (git checkout master) to experiment with its shiny new
features. The last line installs the package into the local Maven package repository ➌. When
we reference bitcoinJ from our programs, Maven will fetch it from this repository (instead of
grabbing it from the Internet), and we can be confident we’re using an uncorrupted version of
this library.
Now we can finally start programming!
Creating a Starter Project for hello-money
In Appendix A, we created a JavaScript program called Hello Money! that detects when
money is sent to a Bitcoin address. Now, we’ll write a more sophisticated program with Java
and bitcoinJ that accomplishes the same task. From the console, navigate to a directory where
you want your new program to live, such as your computer’s Home or Documents folder. A
subdirectory will be created in this place.
Now type the following to have Maven create an empty starter project:
mvn archetype:generate -DgroupId=hellomoney -DartifactId=hello-
money

-DarchetypeArtifactId=maven-archetype-quickstart -
DinteractiveMode=false

http://maven.apache.org/download.cgi
http://git-scm.com/
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01

These commands create a directory called hello-money at the current location with the
hello-money starter project.
NOTE
If Maven prompts you for answers during this process, just keep pressing ENTER to use the
default setting.
Next, we need to inform Maven that this program will use a couple of external libraries. We do
this by editing the file pom.xml, which should now exist in the new directory. Also in this file
should be a section named <dependencies> where we’ll add bitcoinJ as a new
dependency. After the previous dependency (i.e., after the line that reads
</dependency> singular), add the following:
<dependency>

<groupId>com.google</groupId>
<artifactId>bitcoinj</artifactId>
<version>0.8</version>
<scope>compile</scope>

</dependency>

Now we’ll add a plug-in called exec-maven-plugin to our program. A plug-in is a
special type of library. The exec-maven-plugin will make it easier to run our finished
program from the command line.
At the very bottom of the projects in pom.xml (i.e., after the line that reads
</dependencies> plural), add the following lines:
<build>

<plugins>
<plugin>

<groupId>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<version>1.2.1</version>
<configuration>

<arguments>
</arguments>
<mainClass>hellomoney.App</mainClass>

</configuration>
</plugin>

</plugins>
</build>

Now we’re ready to run this empty program for the first time as a test. To do this, execute the
following lines from the console in the program’s directory:
> mvn install ➊
> mvn exec:java ➋

Hello World!

The first line ➊ loads all the necessary libraries into the project and builds the program into a
Java bytecode file. The second line ➋ actually runs the program.
If the program runs successfully, you should see Hello World! printed on the screen.
This means Maven has successfully created a functioning Java program and that we’re now
ready to start writing the core Bitcoin code.
Writing the Code for hello-money
The entirety of the code for our hello-money program follows. To add this to the project,
open the file src/main/java/hellomoney/App.java and replace its contents with this program:
package hellomoney;
import com.google.bitcoin.core.*;
import com.google.bitcoin.store.*;

import com.google.bitcoin.discovery.DnsDiscovery;
import java.io.File;
import java.math.BigInteger;

public class App
{

public static void main(String[] args) throws
BlockStoreException

{
NetworkParameters params = NetworkParameters.prodNet();
Wallet wallet = new Wallet(params);
ECKey key = new ECKey();
System.out.println("Public address: " +

key.toAddress(params).toString());
System.out.println("Private key: " +

key.getPrivateKeyEncoded(params).toString());
wallet.addKey(key);
File file = new File("my-blockchain");
SPVBlockStore store=new SPVBlockStore(params, file);
BlockChain chain = new BlockChain(params, wallet,

store);
PeerGroup peerGroup = new PeerGroup(params, chain);
peerGroup.addPeerDiscovery(new DnsDiscovery(params));
peerGroup.addWallet(wallet);
peerGroup.start();
peerGroup.downloadBlockChain();
wallet.addEventListener(new

AbstractWalletEventListener()
{

public void onCoinsReceived(Wallet wallet,
Transaction tx, BigInteger prevBalance,
BigInteger newBalance)

{
System.out.println("Hello Money! Balance: "

+ newBalance + " satoshis");
}

});
while(true){}

}
}

Next, run the command mvn install, which checks the syntax of this new program code
and builds it into a program file. If the build works, the message BUILD SUCCESS should
appear (along with tons of other esoteric messages).
Before we run the program, let’s walk through it step-by-step to see what it does.
Declarations at the Top of the Program
The first line in the program declares the name of the package:
package hellomoney;

Next, we declare all the libraries the program will reference:
import com.google.bitcoin.core.*;
import com.google.bitcoin.store.*;
import com.google.bitcoin.discovery.DnsDiscovery;
import java.io.File;
import java.math.BigInteger;

Three of these references are for Bitcoin classes: First, we’ll use the core libraries to access
basic Bitcoin classes (such as classes for wallets and keys). Second, we need classes for storing
the blockchain (called a block store in BitcoinJ lingo). Third, we need to use the
DnsDiscovery class, which helps us find other nodes participating in the Bitcoin network.
We import the java.io.File class because we’ll be writing our block store to a file, and
we import the java.math.BigInteger class to work with, well, big integers.
Now let’s define the Java class that holds the program:
public class App
{

public static void main(String[] args) throws
BlockStoreException

{

The program code is stored in a new class called App, which contains a single member
function main. We mentioned this hellomoney.App class in the pom.xml file,
declaring it as the main class of the program.
Let’s look at individual lines in the main function.
Initializing Our Java Objects
Here is the code that initializes the Java object we need from the bitcoinJ library.
NetworkParameters params = NetworkParameters.prodNet();➊
Wallet wallet = new Wallet(params);➋
ECKey key = new ECKey();➌
System.out.println("Public address: " +➍

key.toAddress(params).toString());
System.out.println("Private key: " +➎

key.getPrivateKeyEncoded(params).toString());
wallet.addKey(key);➏
We start by fetching the network parameters for the main, production Bitcoin network ➊.
Although only one true Bitcoin network is actually used for transactions, it’s difficult to test the
Bitcoin system thoroughly with real money; therefore, Bitcoin developers also maintain a
second Bitcoin network called TestNet for testing only. The NetworkParameters
structure contains information about the genesis block (the first block in the block-chain) as
well as information about the maximum number of coins and several other assorted details,
which may differ between the main Bitcoin network and the TestNet. By having all this
information packed in the NetworkParameters data structure, it’s easy to connect our
program to another network besides the main Bitcoin network, such as the TestNet, as desired.
Next, we create a new, empty wallet that we’ll set up to receive our coins ➋. As discussed
earlier, Bitcoin wallets contain one or more Bitcoin addresses, and each Bitcoin address consists
of a public and a private key. Here ➌, the bitcoinJ library creates a new key pair for us. Then,
we print out the public address and private keys that were generated ➍➎. Finally, we add our
new key pair to the wallet ➏.
WARNING
Usually, when using bitcoinJ, you should reuse the same wallet every time the program runs and
load/save it every time the program starts/stops or your program can lose track of money. This
is not an issue for the simple hello-money program. However, before you build more
sophisticated bitcoinJ programs, read “Gotchas When Using Wallets in BitcoinJ” on page 239.
Not only does a Bitcoin app need a wallet, it also needs a blockchain. The following lines
initialize a new blockchain for us:
File file = new File("my-blockchain");➊
SPVBlockStore store = new SPVBlockStore(params, file);➋
BlockChain chain = new BlockChain(params, wallet, store);➌
Because blockchains consume lots of space, we’ll write it to a file named my-blockchain ➊.
Next, we create a block store, which is an object that manages the data for our copious
blockchain data ➋. BitcoinJ offers several block store types, all with different feature and
performance trade-offs. In this example, we’ll use an SPVBlockStore object, which is

ch00leve1sec173
ch00leve1sec173
ch00leve1sec173
ch00leve1sec173
ch00leve1sec173
ch00leve1sec173
page_239
page_239

usually the best choice for most apps.
So what are the trade-offs you need to know about? Well, the biggest performance challenge
any app that works with bitcoins has to deal with is that the official Bitcoin blockchain is larger
than 10GB in size. Do most Bitcoin apps really need all 10GB of the blockchain?
To answer this question, let’s consider why the blockchain exists. At a simplified level, a Bitcoin
blockchain is responsible for two main jobs:
1. Figuring out how much money everyone on the network has
2. Figuring out whether new transactions broadcast across the network are valid
For the first task, the blockchain allows us to examine all the historical blocks in the blockchain
and compile comprehensive data about every Bitcoin address ever used and how much money
each contains. For the second task, it allows us to examine new blocks of transactions created
by the network and then to verify that these blocks have the appropriate hashing information
that proves they are correctly mined blocks according to the latest difficulty requirements.
But consider the first job of the blockchain: Do most apps need to discern how much money is
in every wallet in existence? No, most apps only need to identify the amount of money in one
or a small number of wallets. Therefore, not all 10GB of data are needed. The prescient Satoshi,
in his original Bitcoin whitepaper, was able to see that in this case, an optimization called
Simplified Payment Verification (SPV) was possible.
NOTE
We also covered SPV a bit in Chapter 9, when comparing different types of Bitcoin wallets.
Here’s a quick refresher of how SPV works: If you know you’re interested in a single wallet
ahead of time, you can just tally up how much money is in that one wallet as you pull the entire
historical blockchain off the Bitcoin network. At that point, you only need to store header
information of blocks and can ignore information in older blocks entirely in most situations,
which is what SPVBlockStore does. In doing so, the SPVBlockStore (as of 2014) is
less than 1GB in size, less than a one-tenth the size of the official blockchain, and this is why we
use SPVBlockChain to store our data.
Once we’ve created the block store, we can use it to create a BlockChain object ➌.
Notice that when we create this BlockChain object, we must pass in our wallet as
created. Because we’re not downloading all 10GB, the block-chain object needs to know ahead
of time which wallets (and their addresses) are important to us so it can select the right
blockchain data to download.
NOTE
Even though SPVBlockStore is much smaller than the full blockchain, it can still take a long time
for your app to download all the needed data from the network—usually, about 20 minutes.
However, it will write this data to a file, and an SPVBlockStore object is smart enough to check
the supplied file to see whether any data has already been downloaded since the last time the
program was run. If so, it downloads only new data that has arrived after the program was last
run.
Connecting to the Bitcoin Network
With a wallet and a place to store the blockchain data, we can now connect to the actual
Bitcoin network. A Bitcoin node connects to the Bitcoin network by connecting to several
semirandom peer nodes. Here is the code that fires up a connection to several peers:
PeerGroup peerGroup = new PeerGroup(params, chain);➊
peerGroup.addPeerDiscovery(new DnsDiscovery(params));➋
peerGroup.addWallet(wallet);➌
peerGroup.start();➍
peerGroup.downloadBlockChain();➎
First we create a PeerGroup object ➊ that manages these connections. Next, we choose
some random peers to connect to. We do this by adding a peer discovery algorithm to the
PeerGroup ➋. The DnsDiscovery class basically uses the URLs of some well-
established and trusted nodes as a starting point to discover peers that are willing to accept
new connections. Then we add our wallet to the PeerGroup object ➌.
Now we’re finally ready to inject the app into the Bitcoin network! We do this by calling
PeerGroup.start ➍, which will find and connect to some nodes and perform the
appropriate handshake operations via network sockets. And, like any Bitcoin node, we request

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#ch09

that the peers send us the blockchain so we can become a fully functional node ➎. As
mentioned previously, this step will take a while to run, but only the first time we run the
program.
Listening for New Money
One last feature we need to add to the hello-money program is a hook to detect when
money has arrived:
wallet.addEventListener(new AbstractWalletEventListener()➊

{
public void onCoinsReceived(Wallet wallet, Transaction

tx,➋
BigInteger prevBalance, BigInteger newBalance)

{
System.out.println("Hello Money! Balance: "

+ newBalance + " satoshis");
}

});

The bitcoinJ wallet object has an addEventListener member function, and we can
create an anonymous class of type EventListener, which intercepts and listens to
different events that might happen to a wallet ➊. In our app, we’re interested in the
onCoinsReceived function ➋, which will be called every time money is received by this
wallet. Let’s explore in more detail exactly what this means.
Because the program lives directly in the Bitcoin network, it can listen to the bitcoin firehose, a
stream of data that contains every Bitcoin transaction happening anywhere in the world in
close to real time. Each transaction is examined to see whether it involves receiving money into
any Bitcoin address contained in our wallet. In our app, the wallet contains only one address. As
soon as this transaction arrives (even before it has been incorporated into a mined block), our
function onCoinsReceved will be called.
NOTE
In the hello-money program, we won’t worry about capturing confirmation events on the money
received; we’ll only listen for the transmission of new, unconfirmed transactions. However, if we
were interested in confirmations, we could capture them via the
onTransactionConfidenceChanged function. Because we’re running a full Bitcoin client, we can
do what we want, whereas in Appendix A we were forced to look only at confirmed
transactions due to the limitations of the JSON-RPC interface.
The onCoinsReceived function has four parameters passed into it ➋: the wallet object,
a transaction object, the previous balance in the wallet, and the new balance. The bitcoinJ
library uses the Java BigInteger class to encode Bitcoin balances, because this numerical
type can handle very large integers precisely. If you’ve written financial software before, you’ll
know why the BigInteger class is used (or you may recall how the bank heist was done in
the movie Office Space). The fact is that it’s very easy to botch a financial transaction due to
rounding errors, and using big, precise integers prevents this problem. Hence, bitcoinJ performs
all Bitcoin math using satoshis, the smallest unit of bitcoins, which are worth one one-hundred-
millionth of a bitcoin.
NOTE
Because we added the event listener after we downloaded the initial blockchain, the
onCoinsReceived function will be called only when new transactions appear as the program is
running. If we had declared it before downloading the initial blockchain, the design of bitcoinJ is
such that onCoinsReceived would also have been called on relevant historical transactions.
Finally, we put the program into an infinite loop, so the program continues running as we wait
for money to arrive:
while(true){}

Running and Testing the hello-money Java Program
We’re ready to run and test the program! As before, we first compile and then run the

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#app01

program:
> mvn install
> mvn exec:java

Some messages should then appear as your program connects to the Bitcoin network and
downloads the blockchain. The first time the program is run, this may take a while:
Public address: 16YavT6SmJCuJpZgzRa6XG9WefPEu2M45
Private key:
L3eoA1rXiD8kWFUzdxw744NWjoZNB5BGsxhzVas6y5KJgVteZ4uD
Downloading block chain of size 265184. This may take a while.
Chain download 1% done with 262532 blocks to go, block date Feb
1, 2009 5:09:55 PM
Chain download 2% done with 259880 blocks to go, block date Feb
22, 2009 11:32:14 PM
Chain download 3% done with 257228 blocks to go, block date Mar
18, 2009 9:59:38 PM
Chain download 4% done with 254576 blocks to go, block date Apr
11, 2009 4:27:52 PM
Chain download 5% done with 251924 blocks to go, block date May
4, 2009 9:23:54 AM
...
Done downloading block chain

After the blockchain has finished downloading, you can test the hello-money program
and send it some tiny sum from your favorite wallet app. Simply send 0.0002 BTC to the public
address and record the private key (we’ll be using this money in the follow-up example
program later in this appendix). The program should detect when the money arrives and display
a message like this:
Hello Money! Balance: 20000 satoshis

The new balance in the wallet should display in satoshis (divide by 100,000,000 to see that this
number is indeed 0.0002 BTC).
You’ve successfully written a bitcoinJ program that creates a Bitcoin wallet and reports on any
money received. Now let’s write a second program that uses the newly stored money!
Bye-Bye Money
Now, let’s write a brand-new program that can send money from an arbitrary Bitcoin address.
To create a new bye-bye-money program, run the following from your top-level program
directory:
mvn archetype:generate -DgroupId=byebyemoney -DartifactId=bye-
bye-money

-DarchetypeArtifactId=maven-archetype-quickstart -
DinteractiveMode=false

Then, make the exact additions to the pom.xml file as we did in the hello-money
example, except for the line that reads
<mainClass>hellomoney.App</mainClass>. Change that line to
<mainClass>byebyemoney.App</mainClass>. (These steps are analogous to those
we followed for our hello-money program in “Creating a Starter Project for hello-money”
on page 228.)
Just as before, open the file src/main/java/byebyemoney/App.java and replace its contents
with the following program:
package byebyemoney;

import com.google.bitcoin.core.*;
import com.google.bitcoin.store.*;
import com.google.bitcoin.discovery.DnsDiscovery;

ch00leve1sec161
ch00leve1sec161
ch00leve1sec161
ch00leve1sec161
ch00leve1sec161
ch00leve1sec161
page_228
page_228

import java.util.concurrent.ExecutionException;
import java.io.File;
import java.math.BigInteger;

public class App
{

public static void main(String[] args)
throws BlockStoreException, AddressFormatException,

InterruptedException, ExecutionException
{

NetworkParameters params = NetworkParameters.prodNet();
Wallet wallet = new Wallet(params);
DumpedPrivateKey key = new DumpedPrivateKey(params,

"L1vJHdDqQ5kcY5q4QoY124zD21UVgFe6NL2835mp8UgG2FNU94Sy");
wallet.addKey(key.getKey());
BlockChain chain = new BlockChain(params, wallet,

new MemoryBlockStore(params));
PeerGroup peerGroup = new PeerGroup(params, chain);
peerGroup.addPeerDiscovery(new DnsDiscovery(params));
peerGroup.addWallet(wallet);
peerGroup.start();
peerGroup.downloadBlockChain();
BigInteger balance = wallet.getBalance();
System.out.println("Wallet balance: " + balance);
Address destinationAddress = new Address(params,

"1BTCorgHwCg6u2YSAWKgS17qUad6kHmtQW");
BigInteger fee=BigInteger.valueOf(10000);
Wallet.SendRequest req = Wallet.SendRequest.to(

destinationAddress,balance.subtract(fee));
req.fee = fee;
Wallet.SendResult result = wallet.sendCoins(peerGroup,

req);
if(result != null)

{
result.broadcastComplete.get();
System.out.println("The money was sent!");

}
else

{
System.out.println("Something went wrong sending

the money.");
}

}
}

Many of the lines in this new program are shared with our previous hello-money
program, but let’s look carefully at the new parts.
Importing a Private Key
To send money from our program, we need to import the private key of the Bitcoin address
from the previous example. Here is the code that does this:
DumpedPrivateKey key = new DumpedPrivateKey(params,➊

"L1vJHdDqQ5kcY5q4QoY124zD21UVgFe6NL2835mp8UgG2FNU94Sy");
wallet.addKey(key.getKey());➋
BlockChain chain = new BlockChain(params, wallet,➌

new MemoryBlockStore(params));

In the first lines, we’re explicitly adding a new, preexisting private key to our wallet ➊➋. This is
the key associated with the Bitcoin address that received the money in the hello-money
program. You need to replace the private key shown on this line with the private key you wrote
down when running the previous example. Also, in this new program we’re not using the
SPVBlockStore function; instead, we’re using bitcoinJ’s MemoryBlockStore ➌
function for variety. This block store won’t create a file, but by using it, our program will need
to redownload the blockchain every time the program runs. (This also guarantees that bitcoinJ
will assign the correct balance to the wallet. We’ll discuss why in “Gotchas When Using Wallets
in BitcoinJ” on page 239.)
Sending the Money
Now let’s look at the code that actually sends the money:
BigInteger balance = wallet.getBalance();➊
System.out.println("Wallet balance: " + balance);➋
Address destinationAddress = new Address(params,➌

"1BTCorgHwCg6u2YSAWKgS17qUad6kHmtQW");
BigInteger fee = BigInteger.valueOf(10000);➍
Wallet.SendRequest req = Wallet.SendRequest.to(➎

destinationAddress,balance.subtract(fee));
req.fee = fee;➏
Wallet.SendResult result = wallet.sendCoins(peerGroup, req);➐
First, we get the balance contained in the wallet ➊ and display it ➋. Next, we declare the
destination address the money should be sent to ➌. In this example, we input the main
donation address for the Bitcoin Foundation; feel free to substitute a public address of one of
your own wallets.
Nowadays, it’s best to include a transaction fee when sending bitcoins, which we declare to be
10,000 satoshis ➍. Next, we create a SendRequest object ➎, which is a structure to hold
the basic information about what we’re sending and includes the destination address and the
amount to be sent (which is the balance minus the fee). Then, we set the fee on this object ➏
and send our money ➐!
Ensuring the Money Transmission
If we try to send more money than we have, if the fee is inadequate, or if the Internet
connection drops out at the wrong moment, the money might never be accepted by the
network. Therefore, we need to write code that waits and ensures that the money we sent is
transmitted to the network. Here’s what we’ll add to do this:
result.broadcastComplete.get();➊
System.out.println("The money was sent!");➋
The first line of code ➊ retrieves a Java future object, which indicates that the send
transaction has been properly broadcast to the network. (A standard in Java, futures retrieve
information about a separate execution thread—in this case the thread that monitors
communication with the Bitcoin network.) If this line completes without throwing an exception,
we display a message indicating that the money was sent ➋.
Running bye-bye-money
We can run bye-bye-money in the usual way (remember to input your own private key):
> mvn install
> mvn exec:java

EXCEPTION TYPES IN BITCOINJ
One feature we skimped on in this example is error handling: The main function simply
rethrows a variety of different exceptions for operations that can go wrong as we attempt to
send our money. These include the following exceptions:
• BlockStoreException: This is thrown when the block store cannot be created (most
commonly, this happens with block store types that write to a file when something corrupts the
file).
• AddressFormatException: This is thrown when the format of the address is
incorrect.

page_239
page_239

• InterruptedException: This is thrown when network connection problems occur.
• ExecutionException: This is thrown when we’re using a future object and an
exception occurs in the other thread (as happens when we check for completion of the
transaction broadcast).
In a more sophisticated Bitcoin app, you should catch all of these exception types separately
and add more descriptive error messages for your app’s users.
Because this program churns through the blockchain in memory, you’ll need to wait a few
minutes or more for it to complete (even when you rerun it). If the program is successful, you’ll
see the message The money was sent!, and the money should arrive at the destination wallet.
You can also access a blockchain information site (such as http://blockchain.info/), enter the
source or destination address, and see that the details of the transaction are part of the public
record.
Congratulations! You now understand the basics of writing a Bitcoin application!
Gotchas When Using Wallets in BitcoinJ
To the novice, the way wallets and the BlockChain object work in bitcoinJ can be very
confusing. If you don’t fully understand bitcoinJ’s behavior, bitcoinJ can also report incorrect
wallet balances.
This happens because bitcoinJ is optimized around the concept of an SPV blockchain. The
performance benefits of SPV blockchains were discussed earlier, but because they contain only
limited blockchain data, you need to follow a few basic rules to ensure they work properly for
you in bitcoinJ:
1. If your app’s wallet already has money in it, bitcoinJ needs to know the amount before the
blockchain is downloaded from the network.
2. After the blockchain is loaded, bitcoinJ will perform the necessary tasks to ensure the
wallet’s accuracy as new transactions appear on the network.
3. If you use a block store type that supports saving to a disk file, your app is responsible for
saving the wallet to a file, as well (it is also responsible for loading the block store and wallet
data).
As you saw when we constructed a BlockChain object, bitcoinJ expects the app to pass in
a wallet object. This allows the wallet to be updated when relevant historical transactions are
found in downloaded blocks and allows rule #1 to be enforced: Be sure not to add additional
keys to your wallet after the fact and expect your wallet to work without redownloading the
blockchain.
Similarly, when we initialized the PeerGroup object, we called addWallet() to add
our wallet to the peer group. By doing so, bitcoinJ keeps the wallet balance in sync with any
new transactions that appear in the Bitcoin network as the program is running, enforcing rule
#2.
To make sure rule #3 is adhered to, you can use the Wallet.loadFromFile() and
Wallet.saveToFile()functions. A Wallet.autoSaveToFile() function is also
available that can help with loading and saving the block store and wallet data. To learn how to
use these functions properly, look at the example programs in the bitcoinJ repository.
If you keep the previously listed three basic tenets in mind, you’ll avoid most of the pitfalls that
accompany mastering bitcoinJ.
Conclusion
We hope you’ve enjoyed this tour of bitcoinJ programming, and we look forward to seeing any
awesome new apps that you build. After all, the app you build just might completely reinvent
how people interact with their money in the Internet age!

http://blockchain.info/

INDEX
Note: Page numbers in italics refer to comic pages
Numbers & Symbols
µBTC (microbitcoins), 9
51 percent attacks, 167
A
addEventListener function, 234
addition, and elliptic curves, 147–148
AddressFormatException exception type, 239
addWallet() function, 240
Adleman, Leonard, 133–134
alternative coins (altcoins), 64
comic on, 181–184
Andresen, Gavin, 113–114
anonymity, Bitcoin ATMs and, 62
anonymity by default, 124
anonymous rating service, 208
application specific integrated circuits (ASICs), for mining, 174
arbitrage, 64
Armory Bitcoin Client, 41
ASICs (application specific integrated circuits), for mining, 174
ask order, 63
asymmetric key cryptography, 133
asynchronous programming, 221
ATMs, Bitcoin, 62
Austrian economics, 126
authentication
password for, 40
two-factor, 36, 53–54
Authy app, 58–59
average net worth, 121–122
B
Back, Adam, 120
bank account
linking to Coinbase, 59–60
linking to exchange, 65
bid orders, 63
BigInteger class (Java), 235
BIP38 encryption, 40
BIPs (Bitcoin Improvement Proposals), 40
bitaddress.org, 38
Bitcoin, 1
in 2030, 199–212
beginnings, 112–116
benefits of using, 3
cap on total supply, 26
complexity of, 4–5, 27–29
cryptocurrencies as side chains, 121
energy costs of, 124–125
future role, 121–123
how it works, 8–9
motive for creating, 2–3
potential of, 116–127
risk of destruction, 118–119

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_9
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_167
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_234
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_147
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_239
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_240
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_133
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_64
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_113
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_62
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_124
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#page_208
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_174
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_64
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_41
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_174
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_63
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_133
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_221
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_62
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_126
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_40
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_36
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_53
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_58
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_121
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_120
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_59
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_65
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_63
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_235
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_40
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_40
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_38
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#page_1
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#page_199
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_112
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#page_3
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_26
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#page_4
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_27
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_121
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_124
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_121
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_8
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#page_2
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_116
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_118

safety and security, 31, 61
units, 9–10
value growth, 114, 116
Bitcoin addresses, 10–11, 139
generating
with Bitcoin wallet program, 19
with master public key, 190
sharing, 156
SPV wallets vs. full wallets, 193–195
Bitcoin ATMs, 62
Bitcoin classes (Java), 231
bitcoin.conf file, 218
Bitcoin Core, 38, 214
initializing connection, 220–221
JSON-RPC API, 222
programming techniques and, 217–218
starting, 218–219
version 0.1, 113
bitcoind, 214
programming techniques and, 217–218
Bitcoin exchanges, 52
intermediaries, 53–54
live exchanges, 71
Bitcoiniacs, 53
Bitcoin Improvement Proposals (BIPs), 40
BitcoinJ, 226
exception types, 239
installing, 227–228
issues for wallets, 239–240
Bitcoin network, 169
code for connecting, 233–234
Bitcoin sellers, finding, 67–68
Bitcoin software applications
in JavaScript, 217
security notes on programming, 215–216
writing approaches, 214–215
Bitcoin wallets. See wallets
BitPay, 214
Bitrated, 70
Bitstamp, 64
BitTorrent, 119, 127
black hat hacker, 216
blind signatures, 111
block
anatomy of, 171–175
number of transactions included in, 180
blockchain, 19–26, 96, 165
distribution, 138
forking, 23–25
importance of, 211
initializing, 232
lottery, 21–23
orphaned, 24–25
reasons for, 232–233
recording transactions, 161, 170
size of, 191
storing, 33

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_31
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_61
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_9
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_114
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_116
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_139
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_19
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_190
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_156
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_193
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_62
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_231
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_218
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_38
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_214
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_220
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_222
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_217
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_218
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_113
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_214
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_217
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_52
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_53
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_71
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_53
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_40
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_226
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_239
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_227
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_239
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_169
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_233
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_67
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_217
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_215
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_214
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_214
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_70
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_64
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_119
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_127
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_216
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_111
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_171
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_180
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_19
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_165
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_138
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_23
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#page_211
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_232
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_21
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_24
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_232
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_161
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_170
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_191
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_33

Blockchain.info, 37
block depth, 25
block difficulty, 172–173
block hash, 138
block header, 171
data in, 172
and SPV wallets, 192, 193
BlockStoreException exception type, 239
Bosselaers, Antoon, 140
brain wallets, 45–46
broadcast-only node, 169
BTC, 9
BTC China, 64
BTC-E, 64
BTCquick, 53
Buffett, Warren, 110
buttonwood exchanges, 71
buying bitcoins, 49–71
with Coinbase, 58–61
from currency exchange, 62–66
methods, 51–52
from middleman, 52–57
person-to-person, 67–71
bye-bye-money program, 236–239
ensuring money transmission, 238
running, 238–239
Byzantine Generals’ Problem, 2–3, 164–165
C
C#, 226
C++, 226
calculus, 211
callback function, 221
cap on total bitcoin supply, 26
Cavirtex, 64
change address, 187
charities, accepting bitcoins, 18
Chaum, David, 111
Circle, 53
client.getBalance function, 222
client.listTransactions function, 223
client-server architecture, 119
Coinbase, 36, 53
buying bitcoins with, 58–61
linking bank account to, 59–60
registering at, 58
coin control, 196
cold storage, 47
vs. hot storage, 33–34
collision, hash functions, 132
colored coins, 205, 206
comic
on altcoins, 181–184
on Bitcoin, 73–108
commodities, spread for, 65–66
computer viruses, threat to wallets, 216
confirmed payments, security, 194
confirming transactions in

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_37
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_25
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_172
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_138
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_171
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_172
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_192
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_193
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_239
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_140
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_45
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_169
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_9
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_64
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_64
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_53
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_110
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_71
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_49
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_58
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_62
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_51
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_52
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_67
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_236
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_238
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_238
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#page_2
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_164
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_226
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_226
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#page_211
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_221
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_26
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_64
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_187
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_18
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_111
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_53
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_222
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_223
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_119
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_36
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_53
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_58
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_59
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_58
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_196
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_47
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_33
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_132
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#page_205
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#page_206
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_65
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_216
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_194

Hello Money! app, 222
infinite loop of, 164
contracts, 55–56
convenience, of storage, 35
credit cards, 111, 112
vs. Bitcoin transactions, 57
issuers, 125
cross-domain restrictions, 217
cryptocurrencies, 129
competition with Bitcoin, 119–121
cryptography, 129–159
Bitcoin need for, 137–139
elliptic curve, 141
methods in Bitcoin, 139–141
overview, 130–137
and rounding errors, 151
security for Bitcoin, 157–158
currencies
Bitcoin advantages over existing, 117–118
converting to bitcoins, 55–57
decentralized, 1
ideal, 117
stateless, 2
currency codes, standard for, 9n
currency exchanges, 50
buying bitcoins from, 62–70
opening, 114
transferring dollars to account, 65
Cybercash, 111
D
Data Universal Numbering Service (DUNS), 214n
decentralization, in mining, 179–180
decoding, cryptography, 134
decrypting messages, 130
deflation, dangers of, 126
<dependencies> section, 229
deterministic key generation, 187–190
combining with watch-only wallet, 189
difficulty target, 171
DigiCash, 111
bankruptcy, 112
digital currencies, 1, 64
dangers of decentralized, 123–127
discussions on government role, 116
history, 110–112
digital signatures, 11, 91, 131–132, 135–136
authorizing transactions with, 137–138
using elliptic curves, 154–155
discounts, for limit orders, 66
discrete logarithm, 131–132
distributed autonomous corporations, 208
distributed computing projects, Bitcoin as largest, 115
distribution of bitcoins, 162
divisibility, of currency, 117
DnsDiscovery class, 234
Dobbertin, Hans, 140
dollar bill, life span of, 118

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_222
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_164
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_55
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_35
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_111
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_112
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_57
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_125
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_217
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_129
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_119
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_129
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_137
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_141
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_139
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_130
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_151
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_157
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_117
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_55
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#page_1
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_117
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#page_2
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_9
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_50
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_62
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_114
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_65
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_111
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_214
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_179
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_134
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_130
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_126
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_229
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_187
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_189
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_171
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_111
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_112
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#page_1
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_64
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_123
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_116
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_110
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_11
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#page_91
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_131
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_135
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_137
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_154
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_66
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_131
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#page_208
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_115
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_162
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_117
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_234
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_140
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_118

dollars, converting to bitcoins, 55–57
double SHA256 hash, 171
security and, 156
double spending, 25, 167
Draper, Adam, 110
DUNS (Data Universal Numbering Service), 214n
durability, of currency, 118
E
e-cash, 111
ECDSA (elliptic curve digital signature algorithm), 146–153
signing Bitcoin transaction with, 153–156
verifying signature with, 155
e-commerce, building app using, 214
e-gold, 112
Electrum wallet, 14–16, 38, 188
elliptic curve cryptography, 141
calculating sum of adding two points, 149
pseudocode for summation and multiplication, 158–159
elliptic curve digital signature algorithm (ECDSA), 146–153
signing Bitcoin transaction with, 153–156
verifying signature with, 155
encoding, cryptography, 134
encryption, 130
BIP38, 40
paper wallets, 39–40
password for, 40
energy costs, of Bitcoin, 124–125
error handling, Bitcoin programming, 239
escrow services, 68, 69
face-to-face bitcoin purchase with, 69–71
face-to-face bitcoin purchase without, 68
setting up, 70
exchange intermediary, Coinbase as, 58
exec-maven-plugin plug-in, 229
ExecutionException exception type, 239
F
face-to-face bitcoin purchases
with escrow, 69–70
problems, 69
without escrow, 68
fees, 26–27, 170, 238
for Bitcoin transaction, 18
for currency exchange, 63
for middleman, 53
field programmable gate arrays (FPGAs), for mining, 174
Finney, Hal, 113
first bits scheme, 10n
FPGAs (field programmable gate arrays), for mining, 174
fragmented private keys, and multi-signature addresses, 41–42
fraud prevention, 125
Freenet, 127
Friedman, Milton, 110
full node, 191
full payment verification, 191
full wallets, 187
vs. SPV wallets, 193–195

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_55
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_171
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_156
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_25
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_167
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_110
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_214
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_118
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_111
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_146
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_153
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_155
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_214
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_112
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_14
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_38
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_188
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_141
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_149
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_158
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_146
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_153
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_155
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_134
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_130
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_40
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_39
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_40
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_124
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_239
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_68
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_69
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_69
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_68
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_70
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_58
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_229
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_239
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_69
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_69
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_68
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_26
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_170
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_238
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_18
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_63
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_53
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_174
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_113
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_174
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_41
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_125
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_127
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_110
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_191
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_191
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_187
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_193

fungibility, of currency, 118
G
generator point, elliptic curve cryptography, 152
genesis block, 113, 165
German mark, 2n
Git, installing, 227
git checkout command, 228
Gnutella, 119, 127
gold, wealth stored as, 121
gold coins, 1
goods, first exchange for bitcoins, 114
Go programming language, 226
government
digital currency companies and, 111–112
risk of Bitcoin destruction by, 119
stability, and Bitcoin, 126–127
graphics-processing units (GPUs), for mining, 174
H
hacker theft, likelihood of, 38
hardware, for mining, 174–175
2030 requirements, 202
energy efficiency of, 178
profitability threshold curves for comparing, 179
hardware wallets, 42–43
hash, 98, 132–133
of transactions in block, 172
hash functions, 131
for verifying information, 132–133
hash rate
projecting future, 177
theoretical limits, 178–179
Hayek, Friedrich, 126
health of network, SPV wallets vs. full wallets, 195
heavyweight wallets, 191
hellomoney.js file, 220
Hello Money! program, 217–218, 220–222
hello-money starter project
creating, 228–229
declarations, 231
hook for detecting money arrival, 234
running and testing, 235–236
writing code, 230–235
hierarchical deterministic wallets, 190
Hill, Austin, 120
history of Bitcoin, 112–116
homebrew (command-line tool), 219
hosted wallets
online services, 36
vs. personal wallets, 34–35
hot storage, 47
vs. cold storage, 33–34
hot wallets, personal, 37–38
human-readable Bitcoin addresses, 10n
hybrid wallets, 187
I
illegal activity, Bitcoin and, 124

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_118
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_152
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_113
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_165
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#page_2
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_227
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_228
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_119
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_127
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_121
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#page_1
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_114
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_226
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_111
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_119
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_126
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_174
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_38
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_174
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#page_202
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_178
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_179
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_42
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_132
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_172
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_131
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_132
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_177
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_178
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_126
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_195
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_191
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_220
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_217
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_220
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_228
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_231
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_234
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_235
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_230
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_190
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_120
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_112
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_219
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_36
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_34
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_47
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_33
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_37
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_187
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_124

impedance mismatch, 57
importing private key, 17, 39, 193, 194–195, 237
installing SPV wallets vs. full wallets, 193
integer factorization, 131
Internet bubble, 120
InterruptedException exception type, 239
irreversibility, of transactions, 25–26, 56
superiority of, 57
J
Java, 226
initializing objects, 231–233
installing, 226–227
java.io.File class, 231
Java JDK (Java Development Kit), 226
java.matho.BigInteger class, 231
JavaScript, 213–223
preparing machine for, 218–219
writing Bitcoin program in, 217–218
jelly-filled donut incident, 141–156
JSON-RPC API (JavaScript Object Notation - Remote Protocol Call), 222
limitations of writing Bitcoin programs using, 223
JSON-RPC protocol, 214
K
Kaminsky, Dan, 118
Keynesian economics, 126
Kienzle, Jörg, 110–111
Koblitz curve, 151
Kraken, 64
Krugman, Paul, 117
L
Landauer limit, 157
laptops, private keys on, 44
ledger, 11
length extension, 171n
liability, for stolen bitcoins, 34
lightweight wallets, 192
limit orders, 66
Linux
installing Git, 227
installing Maven, 227
OpenJDK version of Java, 227
setting up Bitcoin Core server, 219
live Bitcoin exchanges, 71
LocalBitcoins.com, 67, 68
escrow service, 70
M
Mac OS
installing Git, 227
installing Maven, 227
setting up Bitcoin Core server, 219
man-in-the-middle attacks, 216
market orders, 65–66
MasterCard, 112
master private key, 188
master public key, 188
generating Bitcoin address with, 190

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_57
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_17
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_39
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_193
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_194
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_237
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_193
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_131
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_120
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_239
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_25
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_56
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_57
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_226
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_231
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_226
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_231
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_226
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_231
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_213
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_218
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_217
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_141
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_222
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_223
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_214
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_118
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_126
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_110
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_151
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_64
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_117
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_157
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_44
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_11
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_171
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_34
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_192
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_66
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_227
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_227
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_227
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_219
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_71
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_67
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_68
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_70
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_227
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_227
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_219
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_216
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_65
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_112
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_188
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_188
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_190

Maven
empty starter project created with, 228
installing, 227
mBTC (millibitcoins), 9
MD5 (message digest algorithm), 132
meeting places, for Bitcoin transactions, 68
MemoryBlockStore function (bitcoinJ), 237
merchant services, 214
Merkle trees, 192
mesh networks, 169
message digest algorithm (MD5), 132
microbitcoins (µBTC), 9
middleman, buying bitcoins from, 52–57
Miller-Rabin primality test, 90
millibitcoins (mBTC), 9
mining, 5, 20, 26–27, 96, 99, 161–180
in 2030, 201–202
decentralization of, 179–180
difficulty of, 173
distributing new currency with, 167–168
hardware, 174–175
2030 requirements, 202
energy efficiency of, 178
profitability threshold curves for comparing, 179
need for, 162–168
nodes, 170
pooled, 175–176
practicality, 50
preventing attacks with, 166–167
process for, 168–176
for profit, 176–177
proof-of-work in, 138–139
solving a block, 171
modular arithmetic, 131n
“m of n” private key, 42
money laundering, 112–113
Moore’s law, 179n
Moxie Jean, 67
Multibit, 38
multi-signature addresses, and fragmented private keys, 41–42
multi-signature transactions, 57, 69–70
mvn install command, 230
My Wallet Service, 37
N
Nakamoto, Satoshi, 3, 110, 211
identity, 113
last comment, 114
white paper on Bitcoin, 112
network effect, 120
NetworkParameters structure, 232
newbiecoins.com, 13
newly minted bitcoins, 26–27
Newton, Isaac, Principia, 210–211
node-bitcoin, installing, 218
Node.js library, 217, 221
installing, 218
Node Package Manager, 218

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_228
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_227
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_9
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_132
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_68
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_237
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_214
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_192
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_169
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_132
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_9
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_52
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#page_90
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_9
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#page_5
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_20
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_26
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#page_99
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_161
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#page_201
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_179
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_173
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_167
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_174
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#page_202
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_178
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_179
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_162
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_170
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_175
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_50
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_166
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_168
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_176
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_138
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_171
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_131
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_42
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_112
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_179
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_67
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_38
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_41
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_57
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_69
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_230
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_37
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#page_3
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_110
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#page_211
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_113
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_114
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_112
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_120
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_232
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_13
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_26
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#page_210
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_218
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_217
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_221
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_218
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_218

nodes
broadcast only, 169
full, 191
relay, 170
nominal deflation, 126
nonprofit organizations, accepting bitcoins, 18
NXT, 125
O
off-chain transactions, 201
offline transaction signing, 40–41
onCoinsReceived function, 234–235
online wallet services
hosted, 36
personal, 34, 37
Oracle Corporation, 226
orders, placing to buy bitcoins, 65
order of curve, elliptic curve cryptography, 152–153
orphaned blocks, 24–25
P
paper money, color copiers as threat, 110
paper wallets, 39
encrypted, 39–40
passwords, 14, 40
for brain wallet, 45
function of, 40
loss of, 37
Peercoin, 125
PeerGroup object, 233–234, 240
peer-to-peer architecture, 119
pegging, 120
pending transaction, 18
Perrig, Adrian, 110–111
personal wallets
vs. hosted wallet, 34–35
hot storage, 37–38
online services, 37
person-to-person bitcoin purchases, 52, 67–71
point multiplication, 150, 158–159
point-of-sale terminals, watch-only wallet for, 187
polling, Bitcoin programming, 223
pom.xml file, 229, 236–237
pooled mining, 175–176
portability, of currency, 117
Preneel, Bart, 140
price discovery process, 120
privacy, 11n
and criminals, 124
multiple addresses and, 12
private currencies, 2
private key, 11–12, 150
compromise of, 41
extra protection for, 139
fragmented, and multi-signature addresses, 41–42
generating, 37
importing, 237
master, 188

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_169
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_191
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_170
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_126
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_18
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_125
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#page_201
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_40
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_234
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_36
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_34
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_37
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_226
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_65
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_152
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_24
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_110
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_39
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_39
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_14
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_40
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_45
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_40
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_37
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_125
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_233
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_240
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_119
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_120
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_18
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_110
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_34
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_37
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_37
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_52
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_67
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_150
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_158
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_187
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_223
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_229
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_236
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_175
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_117
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_140
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_120
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_11
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_124
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_12
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#page_2
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_11
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_150
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_41
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_139
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_41
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_37
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_237
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_188

memorizing, 45
parable on, 141–145
reversing function of, 136
security for, 39, 186
signing transaction with, 156
SPV wallets vs. full wallets, 194
storing, 33
profit, mining for, 176–177
programming languages, for Bitcoin network connection, 225–226
proof-of-stake, 125
proof-of-work, 125, 166
and blockchain, 165
in mining, 138–139
protecting bitcoins, 61. See also security
protocol, for Bitcoin, 112
public information, transactions as, 11
public key, 150
encryption, 91
master, 188
parable of, 141–145
reversing function of, 136
sharing, 156
public key cryptography, 133–135
public/private key pair, creating with ECDSA, 154
pushing, Bitcoin programming, 223
Python, 226
Q
quick response (QR) codes, for Bitcoin address, 10
R
Race Integrity Primitives Evaluation Message Digest (RIPEMD), 139–141, 188
radical decentralization, 126
random key generation, 187–190
randomness, for generating Bitcoin address, 39
relay node, 170
RelayRides, 67
remote servers, Electrum connection to, 15
retailers, acceptance of Bitcoin, 116
reversible transactions, 55–56
rewards, 170
from Bitcoin-mining lottery, 22
for transaction processing, 26
RIPEMD (Race Integrity Primitives Evaluation Message Digest), 139–141, 188
risks, to Bitcoin, 117–121
Rivest, Ron, 133–134
rounding errors, 235
and cryptography, 151
RSA encryption, 133–134, 137
Ruby, 226
S
safety, of storage, 35
satoshi (bitcoin unit), 9
SatoshiLabs, 43
Satoshi Square, 71
savings, Bitcoin for, 121–122
scarcity, of currency, 118
Sean’s Outpost, 18

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_45
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_141
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_136
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_39
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_186
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_156
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_194
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_33
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_176
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_225
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_125
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_125
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_166
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_165
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_138
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_112
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_11
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_150
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch05.html#page_91
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_188
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_141
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_136
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_156
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_133
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_154
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_223
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_226
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_139
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_188
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_126
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_187
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_39
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_170
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_67
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_15
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_116
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_55
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_170
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_22
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_26
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_139
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_188
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_117
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_133
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_235
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_151
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_133
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_137
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_226
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_35
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_9
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_43
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_71
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_121
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_118
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_18

Secure Hash Algorithm (SHA), 139–141, 188
ASIC optimization to calculate, 174
security, 14, 118–119
of Bitcoin exchanges, 63
confidence in, 216–217
double hash scheme and, 156
SPV wallets vs. full wallets, 193–194
of storage, 35
seed, in Electrum, 14, 15
sending money
from Bitcoin address, 236–239
code for, 238
SendRequest object, 238
settlement period, 55, 56
SHA (Secure Hash Algorithm), 139–141, 188
ASIC optimization to calculate, 174
Shamir, Adi, 133–134
Shamir’s Secret Sharing method, 42
shares, of mining reward, 176
side chains, 121
Silk Road website, 124
simplified payment verification (SPV), 191, 233
vs. full wallets, 193–195
single key generation wallet programs, 188
smartphones
private keys on, 44
wallets on, 192
software as a service, 34
speed of payments, SPV wallets vs. full wallets, 193
spending bitcoins, 17–19
SPV (simplified payment verification), 191, 233
vs. full wallets, 193–195
SPVBlockStore object, 232, 233
stateless currencies, 2
storage, Bitcoin, 31–47
choosing method, 46–47
hot vs. cold, 33–34
of large amounts of bitcoins, 38–42
private key, 33
safety, security, and convenience, 35
of small amounts of bitcoins, 35–38
SPV wallets vs. full wallets, 194
Trezor, 43–45
summation, pseudocode for, elliptic curve cryptography, 158–159
symmetric key cryptography, 133
synchronization, SPV wallets vs. full wallets, 193
T
Takhteyev, Yuri, 112n
tangent to curve, elliptic curve cryptography, 150
thick wallets, 191
thin wallets, 192
third-party service provider, as bank, 33
timestamp, for block, 172
Tor, 127
trade volume, of exchange, 63
transaction confirmation, 25
transaction fees. See fees

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_139
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_188
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_174
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_14
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_118
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_63
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_216
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_156
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_193
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_35
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_14
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_15
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_236
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_238
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_238
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_55
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_56
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_139
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_188
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_174
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_133
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_42
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_176
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_121
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_124
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_191
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_233
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_193
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_188
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_44
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_192
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_34
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_193
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_17
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_191
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_233
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_193
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_232
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_233
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#page_2
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_31
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_46
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_33
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_38
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_33
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_35
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_35
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_194
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_43
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_158
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_133
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_193
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_112
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_150
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_191
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_192
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_33
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_172
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_127
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_63
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_25

transaction history, verifying validity, 138
transactions
authorizing with digital signatures, 137–138
full vs. simplified payment verification, 191–195
information in, 138
off-chain, 201
ordering, 166
potential, in 2030, 201
signing
with ECDSA, 153–156
offline, 40–41
offline vs. online, 186–187
with private key, 156
transferring dollars to exchange account, 66
Trezor, 43–45
true blockchain, 24
true ledger, 166
trust, 110, 111
two-factor authentication, 36, 53–54
setting up in Coinbase, 58–59
U
unit of account, 123
units, Bitcoin, 9
unspent output, 196
V
valid transaction, 191
vendor APIs, 214–215
Visa, 112
volatility, of Bitcoin, 120
W
wallet file, 13, 33, 186
Wallet.loadFromFile() function, 240
walletNotify feature, 223
wallets, 12–19, 28–29, 185–198
acquiring bitcoins, 16
BitcoinJ issues, 239–240
brain, 45–46
creating empty, 232
future changes, 197
generating, 38–42
getting bitcoins into, 17
hardware, 42–43
online hosted services, 36
paper, 39
personal vs. hosted, 34–35
running on autopilot, 214
selecting, 197
software design fundamentals, 186–195
features, 195–196
offline vs. online transaction signing, 186–187
random vs. deterministic key generation, 187–190
transferring coins from Coinbase wallet to, 61
virus threat to, 216
watch-only. See watch-only wallet
Wallet.saveToFile() function, 240
watch-only wallet, 186

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_138
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_137
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_191
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_138
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#page_201
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_166
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#page_201
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_153
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_40
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_186
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_156
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_66
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_43
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_24
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#page_166
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_110
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_111
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_36
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_53
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_58
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_123
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_9
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_196
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_191
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_214
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_112
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#page_120
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_13
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_33
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_186
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_240
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_223
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_12
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_185
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_16
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_239
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_45
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_232
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_197
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_38
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_17
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_42
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_36
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_39
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#page_34
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_214
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_197
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_186
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_195
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_186
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_187
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#page_61
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_216
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#page_240
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_186

combining deterministic key generation with, 189
math supporting, 189–190
full vs. SPV, 191–195
for point-of-sale terminals, 187
Windows development environment, JavaScript on, 218–219
X
XBT, 9
Z
zero point, elliptic curve cryptography, 152–153

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_189
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_189
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_191
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#page_187
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#page_218
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#page_9
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#page_152

Footnotes
Chapter 1: What is Bitcoin?
1. Similar to how renminbi is name of the Chinese currency, but the yuan is the basic unit.
2. For example, in the mid-1800s, banks, companies, churches, and individuals issued hundreds
of private currencies in the United States. Eventually, most of these private currencies lost all
their value.
3. Between 1921 and 1924, the value of the German mark fell by a factor of more than 10
trillion due to overprinting by the government. In 2008, the government of Zimbabwe printed
so much of its currency that in a single year, a loaf of bread increased from $1 to $100 billion. In
both cases, any savings that people had in the form of national currency were completely
destroyed.
4. To say that something is decentralized is more or less equivalent to saying that it is run by a
group of strangers who don’t necessarily trust each other.
Chapter 2: Bitcoin Basics
1. The standard for currency codes (ISO 4217) uses the first character in the code to refer to
the country issuing the currency. However, since Bitcoin is a nongovernmental currency, the
standard suggests that its name should start with X, as is the case with gold or silver, whose
codes are XAU and XAG, respectively.
2. The QR code is just one of many ways to easily share a Bitcoin address. Another method is to
use a first bits scheme in which you share only the first few characters of your Bitcoin address,
which has been abbreviated by a Bitcoin address–shortening services (similar to a URL-
shortening service). Starting with version 0.9 and later, Bitcoin also supports human-readable
Bitcoin addresses that replace the traditional ones—much as a website address such as
toys.com replaces the less user-friendly IP address of 123.100.101.111.
3. In general, maintaining complete privacy while doing online transactions is very difficult,
with or without Bitcoin. Although the use of Bitcoin helps protect privacy when compared to
using a credit card, it is not a complete solution. Other tools and precautions might need to be
used as well (for example, using the online privacy-protecting TOR browser).
4. Although every private key is associated with a single Bitcoin address, the reverse is not
always true. A Bitcoin address can require multiple private keys to unlock the bitcoins at that
address (in this case, the Bitcoin address will begin with the number 3 instead of the usual 1).
However, this advanced feature isn’t used for most common transactions.
5. Also called Bitcoin wallet clients.
6. Odds of a trillion times more likely are still a dramatic understatement. The possible value of
Bitcoin addresses is 2160 (~1048), and the number of grains of sand on Earth is approximately
1019.
7. Strictly speaking, this transaction fee is voluntary, but miners may ignore transactions that
have no attached fees.
Chapter 3: Storing your Bitcoins Safely, Securely, and Conveniently
1. Bitcoin wallets are perfect thermal insulators.
2. Some services now offer insured deposits, which may reassure some users in countries with
robust legal systems.
3. Some Bitcoin companies have a tendency to name themselves using technical jargon from
the Bitcoin lexicon, which can cause confusion. The company Blockchain.info and the public
ledger known as the blockchain are completely different entities.
4. Pun intended.
5. Depending on how the online personal wallet service is implemented, passwords may be
recoverable, but some other critical piece of information necessary for spending bitcoins would
not be. If the company can recover all of the information necessary for you to spend your
bitcoins, it is in fact operating as a hosted wallet, and you are entrusting that company with
your money.
Chapter 4: Buying Bitcoins
1. Of course they might be able to seize another ten thousand dollars you own from another
source, but that would not constitute a “reversal” of the original transaction for the sake of this

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#footnote_1
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#footnote_2
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#footnote_3
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch01.html#footnote_4
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#footnote_5
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#footnote_6
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#footnote_7
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#footnote_8
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#footnote_9
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#footnote_10
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch02.html#footnote_11
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#footnote_12
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#footnote_13
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#footnote_14
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#footnote_15
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch03.html#footnote_16
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch04.html#footnote_17

discussion.
Chapter 6: Why Bitcoin is a Big Deal
1. This work is available at
http://users.ece.cmu.edu/~adrian/projects/memoire1/memoire1.html.
2. Yuri Takhteyev, a researcher at the University of Toronto, compared Bitcoin to hockey:
“Hockey is just a collection of rules that describe a particular sport. Nobody owns the rules of
hockey, and if anybody wants to change the rules, they can do so as long as they don’t mind
playing by themselves. It is possible for the rules of hockey to change, but only if everyone
agrees to the new rules. Bitcoin is the same way.” (http://www.research.utoronto.ca/what-is-
bitcoin/)
3. We actually don’t know whether Satoshi Nakamoto is a man, a woman, or a group of people.
4. Hal Finney developed a reusable proof-of-work system that overlaps significantly with
Bitcoin’s proof-of-work used in mining.
5. On March 6, 2014, a user account belonging to Satoshi Nakamoto posted on the
P2Pfoundation forum to clarify that he was not Dorian Satoshi Nakamoto, a man who at the
time was being harassed by journalists because they mistakenly believed he was the inventor of
Bitcoin.
6. These are only rough estimates; the computing power of supercomputers and such projects
is often measured in the number of floating-point operations per second (FLOPs). Bitcoin
doesn’t use floating-point operations but rather purely integer-based operations, so
assumptions need to be made about how to compare these two types of numeric calculation.
7. Here we are using the narrow money stock, also called the M1, of each country’s national
currency as a comparison.
8. As claimed on the BitPay home page in September 2014
9. As claimed on the CoinMap home page in September 2014
10. As indicated by a search of the Google Scholar article index in September 2014
11. Paul Krugman, “The Antisocial Network,” New York Times, April 14, 2013,
http://www.nytimes.com/2013/04/15/opinion/krugman-the-antisocial-network.html
12. http://www.federalreserve.gov/faqs/how-long-is-the-life-span-of-us-paper-money.htm
13. Named after John Maynard Keynes, the economist who is most strongly identified with this
particular approach to monetary policy
14. One well-articulated version of this argument is given by Paul Krugman in the article
“Bitcoin Is Evil,” New York Times, December 28, 2013,
http://krugman.blogs.nytimes.com/2013/12/28/bitcoin-is-evil/.
15. http://ethereum.org/
16. http://bitmessage.org/
Chapter 7: The Cryptography Behind Bitcoin
1. This term is used in addition to the many others for Bitcoin, such as digital currency, math-
based currency, and among those who don’t think bitcoins are real money, virtual currency.
2. An integer is a number that can be written without a fractional or decimal component (e.g.,
−4, 2, or 17 but not 4.23 or 1.5).
3. In modular arithmetic, whenever a number becomes too large, it “wraps around” like the
hour hand on a clock once it moves past 12; instead of pointing to 13, it starts over and points
to 1. However, whereas clocks start over at the number one, the common convention among
mathematicians is to start over at 0. So 3 + 6 = 9, but 3 + 6 (mod 7) = 2 because after reaching 7,
the next three numbers are 0, 1, and 2.
4. Ron Rivest, Adi Shamir, and Leonard Adleman, “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems,” Communications of the ACM 21, no. 2 (1978): 120–126.
5. Hans Dobbertin, Antoon Bosselaers, and Bart Preneel, “RIPEMD-160, a strengthened version
of RIPEMD,” in Fast Software Encryption, ed. Dieter Gollmann (Berlin: Springer-Verlag, 1996),
71–82.
6. Exact vertical lines are considered to hit a third point at y = infinity. Points where the line is
tangent to the curve count as two intersection points (even though it looks like only one in
Figure 7-6), so if a tangent line touches the curve only one more time it is still counted as
“intersecting three times.”
7. If are you trying to follow along but don’t know how to perform a point multiplication

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#footnote_19
http://users.ece.cmu.edu/~adrian/projects/memoire1/memoire1.html
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#footnote_20
http://www.research.utoronto.ca/what-is-bitcoin/
http://www.research.utoronto.ca/what-is-bitcoin/
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#footnote_21
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#footnote_22
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#footnote_23
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#footnote_24
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#footnote_25
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#footnote_26
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#footnote_27
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#footnote_28
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#footnote_29
http://www.nytimes.com/2013/04/15/opinion/krugman-the-antisocial-network.html
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#footnote_30
http://www.federalreserve.gov/faqs/how-long-is-the-life-span-of-us-paper-money.htm
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#footnote_33
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#footnote_34
http://krugman.blogs.nytimes.com/2013/12/28/bitcoin-is-evil/
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#footnote_35
http://ethereum.org/
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch06.html#footnote_36
http://bitmessage.org/
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#footnote_41
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#footnote_42
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#footnote_43
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#footnote_44
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#footnote_45
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#footnote_46
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07fig6
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#ch07fig6
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#footnote_47

calculation, see the pseudocode at the end of this chapter.
8. In addition to hashing the public key with SHA256 and RIPEMD160, some additional steps
are involved (like appending the Bitcoin version number) to the hash to generate the actual
Bitcoin address. However, the cryptographically significant step is the SHA256/RIPEMD160
double hash.
9. Rolf Landauer, “Irreversibility and heat generation in the computing process,” IBM Journal
of Research and Development 5 (1961): 183–191.
Chapter 8: Bitcoin Mining
1. For an early formulation of such a proof, see Jim Gray’s, “Notes on Data Base Operating
Systems,” lecture notes in Operating Systems, An Advanced Course (London: Springer-Verlag,
1978).
2. A formulation of this puzzle by Satoshi is available at
https://bitcointalk.org/oldSiteFiles/byzantine.html.
3. The number of bitcoins mined in each block is cut in half exactly when the blockchain grows
by 210,000 blocks, which takes approximately four years.
4. The maximum limit has generally been increased over time as concerns about memory
constraints have lessened. But there will always be a maximum limit.
5. As mentioned before, two or more miners could possibly add a new block at the same time.
This causes a split in the blockchain but is resolved by waiting to see which branch grows by yet
another block first.
6. A double SHA256 hash is the SHA256 hash of a SHA256 hash. If y = SHA256(x), then
SHA256(y) is the double hash. The use of double SHA256 hashes was proposed by Ferguson and
Schneier in their book Practical Cryptography as a way of preventing a certain kind of
cryptographic attack called length-extension.
7. Nonce is short for “a number used once.”
8. Because a nonce is only a 32-bit number, it is actually possible to exhaust every value
without a solution. If every nonce is tried and the block is still not solved, an extraNonce field,
hidden in the list of transactions, is incremented.
9. The odds of finding a one-in-a-billion hash after trying 1 billion times is ~63.2 percent. In
precise mathematical terms, the probability is 1 − 1/e, where e is the irrational mathematical
constant, approximately equal to 2.718.
10. Strictly speaking, the number of individuals involved in mining is irrelevant, of course; only
the amount of computational power applied to mining matters.
11. At some rate varying from fast to unbelievably fast to slingshot-around-the-sun-to-go-back-
in-time-and-save-the-whales fast.
12. Well, let’s just assume that’s the case for now.
13. Moore’s law is an observation by Gordon E. Moore, cofounder of Intel, that the number of
transistors on computer chips doubles approximately every two years. This has held true for
over 40 years, largely because feature sizes on computer chips have continued to get smaller.
14. In this case, the limit was imposed by trusted developers of the core Bitcoin software. The
protocols encoded in this core software are typically supported by a majority of miners and
therefore usually determine the properties of the longest blockchain on the network.
Chapter 9: Understanding the Different Types of Bitcoin Wallets
1. An important exception is if the user imports a randomly generated private key (perhaps
from a paper wallet) into his deterministically generated Bitcoin wallet. In this case, a new
backup needs to be created because the imported key cannot be derived from the master
private key.
2. The 12-word mnemonic is just one of an infinite variety of ways to encode a 256-bit integer.
You can encode an integer in binary, hex, ASCII letters, lines of poetry, or ice cream toppings.
3. More details on Merkle trees can be found in Satoshi’s original white paper.
4. Generating and importing paper wallets is the same as generating and importing private
keys, and some Bitcoin wallets use one phrase or the other.
5. You think that sounds unlikely? Just wait!
Chapter 10: Bitcoin 2030
1. Note that we are not including micropayments, which Bitcoin makes possible and can
number in the thousands per user per day. In this scenario, we are just referring to buying-

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#footnote_48
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch07.html#footnote_49
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#footnote_50
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#footnote_51
https://bitcointalk.org/oldSiteFiles/byzantine.html
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#footnote_52
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#footnote_53
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#footnote_54
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#footnote_55
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#footnote_56
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#footnote_57
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#footnote_58
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#footnote_59
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#footnote_60
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#footnote_61
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#footnote_62
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch08.html#footnote_63
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#footnote_64
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#footnote_65
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#footnote_66
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#footnote_67
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch09.html#footnote_68
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#footnote_69

things-that-cost-a-dollar-or-more transactions.
2. There remains some dispute as to how much credit Gottfried Leibniz deserves as a
coinventor of calculus.
3. However, it may not survive as “Bitcoin.” It is possible that the blockchain technology could
be adopted by other cryptocurrencies in the future, and those currencies could overtake Bitcoin
in popularity.
Appendix A: Hello Money! A Simple Javascript Program
1. Data Universal Numbering System, a government-assigned code that is unique to every
business in most of the world and identifies that business for financial purposes.
2. https://en.bitcoin.it/wiki/How_to_accept_Bitcoin,_for_small_businesses#Merchant_Services
3. Black hat hackers, as opposed to white hat hackers, are hackers who have no moral qualms
about profiting from and harming their targets.
4. If you don’t understand what a man-in-the-middle attack is, first, be aware that almost
anything you do on the Internet is at risk of this assault, especially if you’re connecting from a
public Internet connection you don’t fully control. Second, stop reading this chapter now and
immediately read the Wikipedia page on this subject at https://en.wikipedia.org/wiki/Man-in-
the-middle_attack.
Appendix B: Bitcoin Programming with Bitcoinj
1. The C++ reference implementation is available at https://github.com/bitcoin/bitcoin/.
2. BitcoinJ is available at http://bitcoinj.github.io/
3. https://github.com/piotrnar/gocoin/
4. https://github.com/conformal/btcd/

file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#footnote_70
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\ch10.html#footnote_71
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#footnote_72
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#footnote_73
https://en.bitcoin.it/wiki/How_to_accept_Bitcoin,_for_small_businesses#Merchant_Services
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#footnote_74
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app01.html#footnote_75
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#footnote_37
https://github.com/bitcoin/bitcoin/
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#footnote_38
http://bitcoinj.github.io/
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#footnote_39
https://github.com/piotrnar/gocoin/
file:///C:\Users\pc1\AppData\Local\Temp\AVSTemp260696687\AvsTmpDll21715\AvsTmpDll4894\OEBPS\Text\app02.html#footnote_40
https://github.com/conformal/btcd/

UPDATES
Visit http://www.nostarch.com/bitcoin for updates, errata, and other information.

More no-nonsense books from NO STARCH PRESS

LAND OF LISP
Learn to Program in Lisp, One Game at a Time!
by CONRAD BARSKI, M.D.
OCTOBER 2010, 504 PP., $49.95
ISBN 978-1-59327-281-4

PYTHON FOR KIDS
A Playful Introduction to Programming
by JASON R. BRIGGS

DECEMBER 2012, 344 PP., $34.95
ISBN 978-1-59327-407-8
full color

http://www.nostarch.com/bitcoin

JAVASCRIPT FOR KIDS
A Playful Introduction to Programming
by NICK MORGAN

DECEMBER 2014, 348 PP., $34.95
ISBN 978-1-59327-408-5
full color

HACKING, 2ND EDITION
The Art of Exploitation
by JON ERICKSON

FEBRUARY 2008, 488 PP. W/CD, $49.95
ISBN 978-1-59327-144-2

THE PRACTICE OF NETWORK SECURITY MONITORING

Understanding Incident Detection and Response
by RICHARD BEJTLICH

JULY 2013, 376 PP., $49.95
ISBN 978-1-59327-509-9

PENETRATION TESTING
A Hands-On Introduction to Hacking
by GEORGIA WEIDMAN

JUNE 2014, 528 PP., $49.95
ISBN 978-1-59327-564-8
PHONE:
800.420.7240 or
415.863.9900
EMAIL:
sales@nostarch.com
WEB:
www.nostarch.com

mailto:sales@nostarch.com
http://www.nostarch.com

